Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5.3x = 5.34
=> x = 4
5.34 = 7.35 - 2.35
= 35 . (7 - 2)
= 5. 35
=> 3x = 35
=> x = 5
\(a,\frac{5\cdot6+5\cdot7}{5\cdot8+20}=\frac{\left(5\cdot6+5\cdot7\right)\div2}{\left(5.8+20\right)\div2}=\frac{13}{12}\)
\(\frac{8.9-4.15}{12.7-180}=\frac{12.6-12.5}{12.7-12.15}=\frac{1}{-8}=\frac{-1}{8}\)
\(Ta\)\(co\)\(\frac{13}{12}=\frac{13.2}{12.2}=\frac{26}{24}\)
\(\frac{-1}{8}=\frac{3\left(-1\right)}{3.8}=\frac{-3}{24}\)
Phần b bạn tính ra rồi làm tương tự phần a nha chúc bạn học giỏi!!!
1. Tìm x, biết:
a) \(\frac{4}{x}=\frac{8}{6}\). Ta có: \(\frac{8}{6}=\frac{8:2}{6:2}=\frac{4}{3}\Rightarrow x=3\)
b) \(\frac{3}{x-5}=\frac{4}{x+2}\). Ta có: \(5-2=3\)
\(\Rightarrow x=\left(3.5\right)+\left(4.2\right)+3=15+8+3=26\)
c) \(\frac{x}{-2}=\frac{-8}{x}\Rightarrow x=\left(-8\right):\left(-2\right)=4\)
2. Rút gọn
a) \(\frac{2^4.5^2.11^2.7}{2^3.5^3.7^2.11}\Leftrightarrow\frac{2^3.2^1.5^2.11.11.7}{2^3.5^2.5^1.7.7.11}\Leftrightarrow\frac{2^1.11}{5^1.7}=\frac{22}{35}\)
b) Tương tự
c) Tương tự
\(\frac{4}{x}=\frac{8}{6}\Rightarrow x=\frac{4.6}{8}=3\)
\(\frac{3}{x-5}=\frac{-4}{x+2}\Rightarrow3\left(x+2\right)=-4\left(x-5\right)\)
\(\Rightarrow3x+6=-4x+20\)
\(\Rightarrow3x+4x=20-6\)
\(\Rightarrow7x=14\)
\(\Rightarrow x=2\)
\(\frac{x}{-2}=\frac{-8}{x}\Rightarrow x^2=\left(-8\right)\left(-2\right)=16\Rightarrow x=\pm4\)
c, \(5^{x+4}-3\cdot5^{x+3}=2\cdot5^{11}\)
\(\Leftrightarrow5^{x+3}\cdot5-3\cdot5^{x+3}=2\cdot5^{11}\)
\(\Leftrightarrow5^{x+3}\left(5-3\right)=2\cdot5^{11}\)
\(\Leftrightarrow5^{x+3}\cdot2=2\cdot5^{11}\)
\(\Leftrightarrow5^{x+3}=5^{11}\)
\(\Leftrightarrow x+3=11\)
\(\Leftrightarrow x=8\)
Vậy x = 8
d, \(2^x+2^{x+1}+2^{x+2}+2^{x+3}+2^{x+4}+2^{x+5}=480\)
\(\Leftrightarrow2^x\left(1+2+2^2+2^3+2^4+2^5\right)=480\)
\(\Leftrightarrow2^x\cdot63=480\)
\(\Leftrightarrow2^x=\frac{160}{21}\)
\(\Leftrightarrow x\approx2,93\)
Ta có: \(\frac{2^5.7+2^5}{2^5.5^2-2^5.3}\) = \(\frac{2^5.\left(7+1\right)}{2^5.\left(5^2-3\right)}\) = \(\frac{2^5.8}{2^5.22}\) = \(\frac{8}{22}\) =\(\frac{56}{154}\)
\(\frac{3^4.5-3^6}{3^4.13+3^4}\) = \(\frac{3^4.\left(5-3^2\right)}{3^4.\left(13+1\right)}\) = \(\frac{3^4.\left(-4\right)}{3^4.14}\) = \(\frac{-4}{14}\)= \(\frac{-44}{154}\)