Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\dfrac{3}{x\left(x+3\right)}+\dfrac{3}{\left(x+3\right)\left(x+6\right)}+...+\dfrac{3}{\left(x+9\right)\left(x+12\right)}=\dfrac{3}{16}\)
=>\(\dfrac{1}{x}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+6}+...+\dfrac{1}{x+9}-\dfrac{1}{x+12}=\dfrac{3}{16}\)=>\(\dfrac{1}{x}-\dfrac{1}{x+12}=\dfrac{3}{16}\)
=>\(\dfrac{x+12-x}{x\left(x+12\right)}=\dfrac{3}{16}\)
=>12/x(x+12)=3/16
=>4/x(x+12)=1/16
=>x(x+12)=64
=>x^2+12x-64=0
=>x^2+16x-4x-64=0
=>(x+16)(x-4)=0
=>x=4 hoặc x=-16
1) Ta có : 2x2 + 3x - 5
= 2x2 - 2x + 5x - 5
= 2x(x - 1) + 5(x - 1)
= (x - 1) (2x + 5)
3) x2 + x - 6
= x2 + 2x - 3x - 6
= x(x + 2) - (3x + 6)
= x(x + 2) - 3(x + 2)
= (x - 3)(x + 2)
Xét \(x^{27}+x^{24}+x^{21}+x^{18}+x^{15}+x^{12}+x^9+x^6+x^3+1\)
\(=\left(x^{27}+x^{21}+x^{15}+x^9+x^3\right)+\left(x^{24}+x^{18}+x^{12}+x^6+1\right)\)
\(=x^3\left(x^{24}+x^{18}+x^{12}+x^6+1\right)+\left(x^{24}+x^{18}+x^{12}+x^6+1\right)\)
\(=\left(x^3+1\right)\left(x^{24}+x^{18}+x^{12}+x^6+1\right)\)
Vậy ta có
\(VT=\dfrac{x^{24}+x^{18}+x^{12}+x^6+1}{\left(x^3+1\right)\left(x^{24}+x^{18}+x^{12}+x^6+1\right)}=\dfrac{1}{x^3+1}\) (đpcm)