Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(\left(6x+1\right)^2+\left(6x-1\right)^2-2\left(1+6x\right)\left(6x-1\right)\)
\(=36x^2+72x+1+36x^2-72x+1-2\left(36x^2-1\right)\)
\(=36x^2+72x+1+36x^2-72x+1-72x^2+2\)
\(=4\)
b) \(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1\)
c) \(x\left(2x^3-3\right)-x^2\left(5x+1\right)+x^2\)
\(=2x^4-3x-5x^3-x^2+x^2\)
\(=2x^4-5x^3-3x\)
d) \(3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)
\(=3x^2-6x-5x+5x^2-8x^2+24\)
\(=-11x+24\)
Bài 8:
b. 1+8x6y3 = 13+23(x2)3y3 = 13+(2x2y)3
= (1+2x2y)(1-2x2y+4x4y2)
e. 27x3+\(\dfrac{y^3}{8}\)\(=\left(3x\right)^3+\left(\dfrac{y}{2}\right)^3\)
= (3x+\(\dfrac{y}{2}\))(9x2-\(\dfrac{3xy}{2}\)+\(\dfrac{y^2}{4}\))
Bài 9:
c. 1- 9x +27x2 -27x3 = 13-3.12.3x+3.(3x)2-(3x)3
= (1-3x)3
d. x3+\(\dfrac{3}{2}x^2\)+\(\dfrac{3}{4}x+\dfrac{1}{8}\) = x3+\(3x^2.\dfrac{1}{2}\)+\(3x.\dfrac{1}{4}+\left(\dfrac{1}{2}\right)^3\)
= (x+\(\dfrac{1}{2}\))3
f. x2 - 2xy +y2 -4m2 +4m.n - n2 = (x2 - 2xy +y2)-((2m)2 -2.2m.n + n2)
= (x-y)2-(2m-n)2 = (x-y-2m+n)(x-y+2m-n)
Bài 1 :
\(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\ge-36\)
Vậy \(MIN_A=-36\) . Dấu \("="\) xảy ra khi \(x^2+5x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Bài 2 :
a ) \(x+y=5\Rightarrow\left(x+y\right)^2=25\)
\(\Leftrightarrow x^2+2xy+y^2=25\)
\(\Leftrightarrow x^2+y^2=25-2.6=13\)
\(B=x^2-4x+1\)
\(B=x^2-4x+4-3\)
\(B=\left(x-2\right)^2-3\ge-3\)
"="<=>x=2
\(C=\dfrac{-4}{x^2-4x+10}\)
Ta có:\(x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6\ge6\)
\(\Rightarrow\dfrac{-4}{x^2-4x+10}\ge-\dfrac{4}{6}=-\dfrac{2}{3}\)
"="<=>x=2
D\(\ge-\dfrac{8}{3}\)<=>x=0,5(tương tự)
a) \(\dfrac{1}{8}x^3y^3-27=\left(\dfrac{1}{2}xy\right)^3-3^3=\left(\dfrac{1}{2}xy-3\right)\left(\dfrac{1}{4}x^2y^2+\dfrac{1}{6}xy+9\right)\)
b)\(\dfrac{8}{125}x^3+27y^3=\left(\dfrac{2}{5}x\right)^3+\left(3y\right)^3=\left(\dfrac{2}{5}x+3y\right)\left(\dfrac{4}{25}x^2-\dfrac{6}{5}xy+9y^2\right)\)
c) \(0.008x^6-27y^3=\left(0.2x^2\right)^3-\left(3y\right)^3=\left(0.2x^2-3y\right)\left(0.04x^4+\dfrac{3}{5}x^2y+9y^2\right)\)
d)\(\left(2x+y\right)^3-\left(x-y\right)^3=\left(2x+y-x+y\right)[\left(2x+y\right)^2+\left(2x+y\right)\left(x-y\right)+\left(x-y\right)^2]\\ =\left(x+2y\right)\left(4x^2+4xy+y^2+2x^2-2xy+xy-y^2+x^2-2xy+y^2\right)\\ =\left(x+2y\right)\left(6x^2+xy+y^2\right)\)
Bài 1:
a) \(\dfrac{1}{8}x^3y^3-27\)
\(=\left(\dfrac{1}{2}xy\right)^3-3^3\)
\(=\left(\dfrac{1}{2}xy-3\right)\left[\left(\dfrac{1}{2}xy\right)^2+\dfrac{1}{2}xy.3+3^2\right]\)
\(=\left(\dfrac{1}{2}xy-3\right)\left(\dfrac{1}{4}xy+\dfrac{3}{2}xy+9\right)\)
\(=\left(\dfrac{1}{2}xy-3\right)\left(\dfrac{7}{4}xy+9\right)\)
b) \(\dfrac{8}{125}x^3+\dfrac{1}{8}y^3\)
\(=\left(\dfrac{2}{5}x\right)^3+\left(\dfrac{1}{2}y\right)^3\)
\(=\left(\dfrac{2}{5}x+\dfrac{1}{2}y\right)\left[\left(\dfrac{2}{5}x\right)^2-\dfrac{2}{5}x.\dfrac{1}{2}y+\left(\dfrac{1}{2}y\right)^2\right]\)
\(=\left(\dfrac{2}{5}x+\dfrac{1}{2}y\right)\left(\dfrac{4}{25}x-\dfrac{1}{5}xy+\dfrac{1}{4}y\right)\)
c) \(0.008x^6-27y^3\)
\(=\left(\dfrac{1}{5}x^2\right)^3-\left(3y\right)^3\)
\(=\left(\dfrac{1}{5}x^2-3y\right)\left[\left(\dfrac{1}{5}x^2\right)^2+\dfrac{1}{5}x^2.3y+\left(3y\right)^2\right]\)
\(=\left(\dfrac{1}{5}x^2-3y\right)\left(\dfrac{1}{25}x^4+\dfrac{3}{5}x^2y+9y^2\right)\)
d) \(\left(2x+y\right)^3-\left(x-y\right)^3\)
\(=\left[\left(2x+y\right)-\left(x-y\right)\right]\left[\left(2x+y\right)^2+\left(2x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=\left(2x+y-x+y\right)\left(4x^2+4xy+y^2+2x^3-2xy+xy-y^2+x^2-2xy+y^2\right)\)
\(=\left(x-2y\right)\left(4x^2+2x^3+xy\right)\)
6) Ta có
\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)
\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)
\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)
a) 5x - 15y = 5(x - 3y)
b) \(\dfrac{3}{5}\)x2 + 5x4 - x2 - y
= \(\dfrac{3}{5}\)x2 + 5x2.x2 - x2 - y
= x2(\(\dfrac{3}{5}\) + 5x2 -1) - y
c) 14x2y2 - 21xy2 + 28x2y
= 7xy.xy - 7xy.3y + 7xy.4x
= 7xy(xy - 3y + 4x)
= 7xy[(xy - 3y) + 4x]
= 7xy[y(x - 3) +4x]
d) \(\dfrac{2}{7}x\)(3y - 1) - \(\dfrac{2}{7}y\)(3y - 1)
= (3y - 1).(\(\dfrac{2}{7}x\) - \(\dfrac{2}{7}y\) )
= (3y - 1).[\(\dfrac{2}{7}\)(x - y)]
e) x3 - 3x2 + 3x - 1
= x2.x - 3x.x + 3.x - 1
= x(x2-3x+3) - 1
g) 27x3 + \(\dfrac{1}{8}\)
= (3x)3 + \(\left(\dfrac{1}{2}\right)^3\)
= (3x + \(\dfrac{1}{2}\)).(9x2 - \(\dfrac{3}{2}\)x + \(\dfrac{1}{4}\))
h) (x+y)3 - (x-y)3
= 2(3x2y) + 2y3
f) (x+y)2 - 4x2
= -3x2 + y(2x + y)
Bài 14:Tìm x
a,\(x-3=\left(3-x\right)^2\)
\(\Rightarrow\left(x-3\right)-\left(3-x\right)^2=0\)
\(\Rightarrow\left(x-3\right)+\left(x-3\right)^2=0\)
\(\Rightarrow\left(x-3\right)\left(1+x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)
b,\(\left(2x-5\right)-\left(5+2x\right)^2=0\)
\(\Rightarrow\left(2x-5\right)+\left(2x-5\right)^2=0\)
\(\Rightarrow\left(2x-5\right)\left(1+2x-5\right)=0\)
\(\Rightarrow\left(2x-5\right)\left(2x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-5=0\\2x-4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=5\\2x=4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=2\end{matrix}\right.\)
Bài 1 : Ta có :
x^3-x^2-7x-a x-3 x^2 x^3-3x^2 2x^2-7x-a + 2x 2x^2 -6x -x - a - 1 -x + 3
Để \(x^3-x^2-7x-a\) chia hết cho x-3 thì :
-x - a = - x + 3
<=> -x + x - a = 3
<=> a = - 3
Vậy GT của a là - 3
Bài 2 :
a) \(x^2-2xy-9z^2+y^2\)
= \(\left(x^2-2xy+y^2\right)-9z^2\)
= \(\left(x-y\right)^2-\left(3z\right)^2\)
= \(\left(x-y-3z\right)\left(x-y+3z\right)\) (1)
Thay x = 6 ; y=-4 ; z= 30 vào BT (1) ta được :
\(\left(x-y-3z\right)\left(x-y+3z\right)=\left(6+4-3.30\right)\left(6+4+3.30\right)\) = (-80) .100 = -8000
Vậy tại x = 6 ; y=-4 ; z=30 thì GT của BT (1) là -8000
b) \(\left(x^3-y^3\right):\left(x^2+xy+y^2\right)\)
= \(\left(x-y\right)\left(x^2+xy+y^2\right):\left(x^2+xy+y^2\right)\)
= ( x- y ) (2)
Thay x = \(\dfrac{2}{3}v\text{à}\) y = \(\dfrac{1}{3}\) vào biểu thức (2) ta được :
\(\left(x-y\right)=\left(\dfrac{2}{3}-\dfrac{1}{3}\right)=\dfrac{1}{3}\)
Vậy tại x = \(\dfrac{2}{3}v\text{à}\) y = \(\dfrac{1}{3}\) thì GT của BT (2) là \(\dfrac{1}{3}\)