K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Theo đề, ta có:

\(\left\{{}\begin{matrix}a+b=-1\\2a+b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=2\end{matrix}\right.\)

Theo đề, ta có:

\(\left\{{}\begin{matrix}a+b+1=0\\2a+b+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=-1\\2a+b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=2\end{matrix}\right.\)

3 tháng 12 2021

bạn giải kỹ hơn đc ko 

Theo đề, ta có:

\(\left\{{}\begin{matrix}a+b=-1\\4a+b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=0\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
17 tháng 12 2021

Câu 1: 

Đỉnh của đths \((\frac{-b}{2a}, \frac{4ac-b^2}{4a})=(\frac{-b}{4},\frac{8c-b^2}{8})=(-1;0)\)

\(\Leftrightarrow \left\{\begin{matrix} \frac{-b}{4}=-1\\ \frac{8c-b^2}{8}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b=4\\ 8c=b^2=16\end{matrix}\right.\Leftrightarrow b=4; c=2\)

 

AH
Akai Haruma
Giáo viên
17 tháng 12 2021

Câu 2:
ĐTHS đi qua 3 điểm $A, B,C$ nên:
\(\left\{\begin{matrix} -1=a.0^2+b.0+c\\ -1=a.1^2+b.1+c\\ 1=a(-1)^2+b(-1)+c\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} c=-1\\ a+b+c=-1\\ a-b+c=1\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} c=-1\\ a=1\\ b=-1\end{matrix}\right.\)

NV
11 tháng 3 2023

Với \(a\ne0\) từ đề bài ta có:

\(\left\{{}\begin{matrix}-\dfrac{b}{2a}=2\\4a+2b+c=1\\16a+4b+c=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}4a+b=0\\4a+2b+c=1\\16a+4b+c=-3\end{matrix}\right.\)

\(\Rightarrow a=-1;b=4;c=-3\)

Vậy (P): \(y=-x^2+4x-3\)

28 tháng 10 2019

a = 0; b = -2

9 tháng 3 2017

 Vì đồ thị đi qua A(2/3; -2) nên ta có phương trình 2a/3 + b = -2

    Tương tự, dựa vào tọa độ của B(0 ;1) ta có 0 + b = 1.

    Vậy, ta có hệ phương trình.

Giải sách bài tập Toán 10 | Giải sbt Toán 10