Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{22}{5}\times\dfrac{6}{121}\times\dfrac{11}{4}\times\dfrac{3}{5}\times\dfrac{1}{3}\times\dfrac{5}{4}\)
\(=\left(\dfrac{22}{5}\times\dfrac{5}{4}\right)\times\left(\dfrac{6}{121}\times\dfrac{11}{4}\right)\times\left(\dfrac{3}{5}\times\dfrac{1}{3}\right)\)
\(=\dfrac{11}{2}\times\dfrac{3}{22}\times\dfrac{1}{5}\)
\(=\dfrac{3}{20}\)
\(=\dfrac{22\times6\times11\times3\times1\times5}{5\times121\times4\times5\times3\times4}=\dfrac{11\times2\times6\times11\times1}{11\times11\times4\times5\times4}=\dfrac{2\times6\times1}{4\times5\times4}=\dfrac{18}{100}=\dfrac{9}{50}\)
`#3107.101107`
a)
\(x+x+\dfrac{1}{2}\times\dfrac{2}{5}+x+\dfrac{8}{10}=121\\3x+\dfrac{1}{5}+\dfrac{4}{5}=121\\ 3x+1=121\\ 3x=121-1\\ 3x=120\\ x=40 \)
Vậy, `x = 40`
b)
\(\dfrac{12+x}{42}=\dfrac{5}{6}\\ \dfrac{12+x}{42}=\dfrac{35}{42}\\ \dfrac{12+x}{42}-\dfrac{35}{42}=0\\ \dfrac{12+x-35}{42}=0\\ \dfrac{x-\left(35-12\right)}{42}=0\\ \dfrac{x-23}{42}=0\\ x-23=0\\ x=23\)
Vậy,` x = 23.`
a: \(x+x+\dfrac{1}{2}\cdot\dfrac{2}{5}+x+\dfrac{8}{10}=121\)
=>\(3x+\dfrac{1}{5}+\dfrac{4}{5}=121\)
=>3x+1=121
=>3x=120
=>x=40
b: \(\dfrac{x+12}{42}=\dfrac{5}{6}\)
=>\(x+12=42\cdot\dfrac{5}{6}=35\)
=>x=35-12=23
\(\frac{3}{17}\times121\times\frac{34}{6}+80\times\left(0,5-5\div10\right)\)
= \(\frac{3\times121\times34}{17\times6}+80\times0\)
=\(\frac{1\times121\times2}{2}+0=121+0=121\)
Bài 2:
a, \(\dfrac{5}{23}\) \(\times\) \(\dfrac{17}{26}\) + \(\dfrac{5}{23}\) \(\times\) \(\dfrac{9}{26}\)
= \(\dfrac{5}{23}\) \(\times\) ( \(\dfrac{17}{26}\) + \(\dfrac{9}{26}\))
= \(\dfrac{5}{23}\) \(\times\) \(\dfrac{26}{26}\)
= \(\dfrac{5}{23}\)
b, \(\dfrac{3}{4}\) \(\times\) \(\dfrac{7}{9}\) + \(\dfrac{7}{4}\) \(\times\) \(\dfrac{3}{9}\)
= \(\dfrac{7}{12}\) + \(\dfrac{7}{12}\)
= \(\dfrac{14}{12}\)
= \(\dfrac{7}{6}\)
\(121:\left(2\times x-1\right)=121\\ 2\times x-1=121:121\\ 2\times x-1=1\\ 2\times x=1+1\\ 2\times x=2\\ x=2:2\\ x=1\)
Đặt A=1/1*3+1/3*5+...+1/119*121
2A=2/1*3+2/3.5+...+2/119.121
2A=1-1/3+1/3-1/5+...+1/119-1/121
2A=1-1/121
2A=120/121
A=60/121
\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{119.121}\)
\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{119.12}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{119}-\frac{1}{121}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{121}\right)\)
\(=\frac{1}{2}.\frac{120}{121}\)
\(=\frac{60}{121}\)
\(\frac{3}{4}\times\frac{8}{9}\times\frac{15}{16}\times...\times\frac{99}{100}\times\frac{120}{121}=\frac{3\times8\times15\times...\times99\times120}{4\times9\times16\times...\times100\times121}\)
\(\frac{\left(1\times3\right)\times\left(2\times4\right)\times\left(3\times5\right)\times...\times\left(9\times11\right)\times\left(10\times12\right)}{\left(2\times2\right)\times\left(3\times3\right)\times\left(4\times4\right)\times...\times\left(10\times10\right)\times\left(11\times11\right)}=\frac{\left(1\times2\times3\times...\times10\right)\times\left(3\times4\times5\times...\times12\right)}{\left(2\times3\times...\times11\right)\times\left(2\times3\times...\times11\right)}=\frac{12}{11\times2}=\frac{6}{11}\)
(1-1/4).(1-1/9).(1-1/16)....(1-1/100).(1-1/121)
=3/4.8/9.15/16...99/100.120/121
=(1.3/2.2).(2.4/3.3).(3.5/4.4)....(9.11/10.10).(10.12/11.11)
=1.3.2.4.3.5...9.11.10.12/2.2.3.3.4.4...10.10.11.11
=(2.3.4...9.10.11).(3.4.5...10.12)/(2.3.4...9.10.11).(2.3.4....10.11)
=12/2.11
=6/11
\(\dfrac{1}{x\times5}=\dfrac{121}{27830}\)
\(\dfrac{1}{x\times5}=\dfrac{1}{230}\)
\(x\times5=230\)
\(x=230:5\)
\(x=46\)
\(\dfrac{1}{x\cdot5}=\dfrac{121}{27830}\)
\(x\cdot5=27830:121\)
\(x\cdot5=230\)
\(x=230:5\)
\(x=46\)