K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2018

2)  \(x^3-6x^2+11x-6=0\)

\(\Leftrightarrow\)\(x^3-3x^2-3x^2+9x+2x-6=0\)

\(\Leftrightarrow\)\(\left(x-3\right)\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\)\(\left(x-3\right)\left(x-2\right)\left(x-1\right)=0\)

bn giải tiếp nha

3)   \(x^3-4x^2+x+6=0\)

\(\Leftrightarrow\)\(x^3-3x^2-x^2+3x-2x+6=0\)

\(\Leftrightarrow\)\(\left(x-3\right)\left(x^2-x-2\right)=0\)

\(\Leftrightarrow\)\(\left(x-3\right)\left(x-2\right)\left(x+1\right)=0\)

lm tiếp nha

4)  \(x^3-3x^2+4=0\)

\(\Leftrightarrow\)\(x^3+x^2-4x^2-4x+4x+4=0\)

\(\Leftrightarrow\)\(\left(x+1\right)\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\)\( \left(x+1\right)\left(x-2\right)^2=0\)

lm tiếp nha

7 tháng 2 2018

Mk làm mẫu 1 bài cho nha !

1. <=> (x^3-x^2)+(5x^2-5x)+(6x-6) = 0

<=> (x-1).(x^2+5x+6) = 0

<=> (x-1).[(x^2+2x)+(3x+6)] = 0

<=> (x-1).(x+2).(x+3) = 0

<=> x-1=0 hoặc x+2=0 hoặc x+3=0

<=> x=1 hoặc x=-2 hoặc x=-3

Vậy ..............

Tk mk nha

23 tháng 7 2016

a)  x(2x-7)-4x+14=0

=>x(2x-7)-2(2x-7)=0

=>(x-2)(2x-7)=0

=>x-2=0 hoặc 2x-7=0

=>x=2 hoặc x=7/2

b, x(x-1)+2x-2=0

=>x(x-1)+2(x-1)=0

=>(x+2)(x-1)=0

=>x+2=0 hoặc x-1=0

=>x=-2 hoặc x=1

c, 2x^3+3x^2+2x+3=0

=>x2(2x+3)+2x+3=0

=>(x2+1)(2x+3)=0

=>x2+1=0 hoặc 2x+3=0

Vì x2+1>0 với mọi x ->vô nghiệm

=>2x+3=0 =>x=-3/2

d, x^3+6x^2+11x+6=0

=>x3+3x3+2x+3x2+3x3+6=0

=>x(x2+3x+2)+3(x2+3x+2)=0

=>(x2+3x+2)(x+3)=0

=>[x2+x+2x+2](x+3)=0

=>[x(x+1)+2(x+1)](x+3)=0

=>(x+1)(x+2)(x+3)=0

=>x+1=0 hoặc x+2=0 hoặc x+3=0

=>x=-1 hoặc x=-2 hoặc x=-3

23 tháng 7 2016

giúp mình với

23 tháng 7 2016

a)  x(2x-7)-4x+14=0

=>x(2x-7)-2(2x-7)=0

=>(x-2)(2x-7)=0

=>x-2=0 hoặc 2x-7=0

=>x=2 hoặc x=7/2

b, x(x-1)+2x-2=0

=>x(x-1)+2(x-1)=0

=>(x+2)(x-1)=0

=>x+2=0 hoặc x-1=0

=>x=-2 hoặc x=1

c, 2x^3+3x^2+2x+3=0

=>x2(2x+3)+2x+3=0

=>(x2+1)(2x+3)=0

=>x2+1=0 hoặc 2x+3=0

Vì x2+1>0 với mọi x ->vô nghiệm

=>2x+3=0 =>x=-3/2

d, x^3+6x^2+11x+6=0

=>x3+3x3+2x+3x2+3x3+6=0

=>x(x2+3x+2)+3(x2+3x+2)=0

=>(x2+3x+2)(x+3)=0

=>[x2+x+2x+2](x+3)=0

=>[x(x+1)+2(x+1)](x+3)=0

=>(x+1)(x+2)(x+3)=0

=>x+1=0 hoặc x+2=0 hoặc x+3=0

=>x=-1 hoặc x=-2 hoặc x=-3

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

30 tháng 9 2018

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

3 tháng 5 2017

c. x^2-5x+6=0

<=> x^2-5x=-6

<=> -4x=-6

<=> x=-6/-4

vậy tập nghiệm của pt là s={-6/-4}

3 tháng 5 2017

      c.   x^2-5x +6 = 0

<=> x^2 - 5x = -6

<=> - 4x = -6

<=> x= -6/-4

3 tháng 5 2017

 Mình chỉ phân tích đa thức thành nhân tử thôi , phần còn lại bạn tự tính nha keo dài lắm

A)  2x2(x+3) - x(x+3) = 0  <=> x(x - 3)(2x-1)=0

B)  (2x+5)2 - (x+2)2=0  <=>  (x+3)(3x+7)=0

C)  (x2-2x) - (3x-6)=0  <=> (x-2)(x-3)=0

D)  (2x-7)(2x-7-6x+18)=0   <=> (2x-7)(-4x+11)=0

E)  (x-2)(x+1) - (x-2)(x+2)=0   <=>  (x-2)*(-1)=0   <=> x-2=0

G)  (2x-3)(2x+2-5x)=0  <=> (2x-3)(-3x+2)=0

H)  (1-x)(5x+3+3x-7)=0     <=>  (1-x)(8x-4)=0

F)   (x+6)*3x=0

I)  (x-3)(4x-1-5x-2)=0  <=>  (x-3)(-x-3)=0

K)   (x+4)(5x+8)=0

H)  (x+3)(4x-9)=0

6 tháng 6 2018

Bài 1. a) 4x - 3 = 0

⇔ x = \(\dfrac{3}{4}\)

KL.....

b) - x + 2 = 6

⇔ x = - 4

KL...

c) -5 + 4x = 10

⇔ 4x = 15

⇔ x = \(\dfrac{15}{4}\)

KL....

d) 4x - 5 = 6

⇔ 4x = 11

⇔ x = \(\dfrac{11}{4}\)

KL....

h) 1 - 2x = 3

⇔ -2x = 2

⇔ x = -1

KL...

Bài 2. a) ( x - 2)( 4 + 3x ) = 0

⇔ x = 2 hoặc x = \(\dfrac{-4}{3}\)

KL......

b) ( 4x - 1)3x = 0

⇔ x = 0 hoặc x = \(\dfrac{1}{4}\)

KL.....

c) ( x - 5)( 1 + 2x) = 0

⇔ x = 5 hoặc x = \(\dfrac{-1}{2}\)

KL.....

d) 3x( x + 2) = 0

⇔ x = 0 hoặc x = -2

KL.....

6 tháng 6 2018

Bài 3.a) 3( x - 4) - 2( x - 1) ≥ 0

⇔ x - 10 ≥ 0

⇔ x ≥ 10

0 10 b) 3 - 2( 2x + 3) ≤ 9x - 4

⇔ - 4x - 3 ≤ 9x - 4

⇔ 13x ≥1

⇔ x ≥ \(\dfrac{1}{13}\)

0 1/13

a) Ta có: \(\left(5x-15\right)\left(4+6x\right)=0\)

\(\Leftrightarrow5\left(x-3\right)\cdot2\cdot\left(2+3x\right)=0\)

\(\Leftrightarrow10\left(x-3\right)\left(2+3x\right)=0\)

Vì 10\(\ne\)0 nên

\(\left[{}\begin{matrix}x-3=0\\2+3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{-2}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{3;\frac{-2}{3}\right\}\)

b) Ta có: \(\left(2x-1\right)\left(5x-6\right)\left(\frac{1}{2}x-\frac{3}{4}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\5x-6=0\\\frac{1}{2}x-\frac{3}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=1\\5x=6\\\frac{1}{2}x=\frac{3}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{6}{5}\\x=\frac{3}{4}:\frac{1}{2}=\frac{3}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{1}{2};\frac{6}{5};\frac{3}{2}\right\}\)

c) Ta có: \(\left(3-4x\right)\left(2x-\frac{3}{4}-x-\frac{4}{3}\right)=0\)

\(\Leftrightarrow\left(3-4x\right)\left(x-\frac{25}{12}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3-4x=0\\x-\frac{25}{12}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=3\\x=\frac{25}{12}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{4}\\x=\frac{25}{12}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{3}{4};\frac{25}{12}\right\}\)

d) Ta có: \(\left(\frac{2}{3}x-\frac{1}{6}\right)\left[5\left(x-1\right)-\frac{3}{2}-\frac{\left(2-3\right)\left(x-1\right)}{3}\right]=0\)

\(\Leftrightarrow\left(\frac{2}{3}x-\frac{1}{6}\right)\left[5x-5-\frac{3}{2}-\frac{-1\left(x-1\right)}{3}\right]=0\)

\(\Leftrightarrow\left(\frac{2}{3}x-\frac{1}{6}\right)\left(5x-5-\frac{3}{2}-\frac{1-x}{3}\right)=0\)

\(\Leftrightarrow\left(\frac{2}{3}x-\frac{1}{6}\right)\left(5x-\frac{13}{2}-\frac{1}{3}+\frac{x}{3}\right)=0\)

\(\Leftrightarrow\left(\frac{2}{3}x-\frac{1}{6}\right)\left(\frac{15x}{3}-\frac{41}{6}+\frac{x}{3}\right)=0\)

\(\Leftrightarrow\left(\frac{2}{3}x-\frac{1}{6}\right)\left(\frac{16x}{3}-\frac{41}{6}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{2}{3}x-\frac{1}{6}=0\\\frac{16x}{3}-\frac{41}{6}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{2}{3}x=\frac{1}{6}\\\frac{16}{3}\cdot x=\frac{41}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{6}:\frac{2}{3}\\x=\frac{41}{6}:\frac{16}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{4}\\x=\frac{41}{32}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{1}{4};\frac{41}{32}\right\}\)

3 tháng 3 2020

\(a.\left(5x-15\right)\left(4+6x\right)=0\\ \left[{}\begin{matrix}5x-15=0\\4+6x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{-2}{3}\end{matrix}\right.\)

\(b.\left(2x-1\right)\left(5x-6\right)\left(\frac{1}{2}x-\frac{3}{4}=0\right)\\ \left[{}\begin{matrix}2x-1=0\\5x-6=0\\\frac{1}{2}x-\frac{3}{4}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{6}{5}\\x=-\frac{3}{2}\end{matrix}\right.\)

c.

\(\left(3-4x\right)\left(2x-\frac{3}{4}-x-\frac{4}{3}\right)=0\\ \Leftrightarrow\left(3-4x\right)\left(x-\frac{25}{12}\right)=0\\ \left[{}\begin{matrix}3-4x=0\\x-\frac{25}{12}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{4}\\x=\frac{25}{2}\end{matrix}\right.\)