K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2017

1,(x+2) x (x-1)

= (x+2) . x - x+2

= x2 + 2x - x + 2

= x2+ 2x + (-x) +2

= x+ x + 2

mà (x+2).(x-1)>0

=>x+ x + 2>0.

=>x+ x > 1

=>x2 >1-x

=> x2>-x-1

do đó: không tìm được x cụ thể.

2,

1 tháng 2 2016

a. x= 1;2

b. x= 1;2;3;4;5;6

c. x= 6;7;8;9;...

d. x= 6;7;8;9;...

e. x= 1;2;3

1 tháng 2 2016

a) x thuộc{1;-1;2;-2}

b)x thuộc {1;-1;2;-2;3;-3;4;-4;5;-5;6;-6}

c) x thuộc {6;-6;7;-7;...}

d) x thuộc {6:-6:7:-7;...}

f) x thuộc { 2;3;4;5;...}

e) x thuộc {0;1;2;3}

g) x thuộc {0;1}

 

27 tháng 2 2016

e) x= 3;4

g) x= 0

duyệt đi

e) x= 3;4

g) x= 0

duyệt đi

2 tháng 4 2020

\((x-6)(3x-9)>0\)
TH1:
\(\orbr{\begin{cases}x-6< 0\\3x-9< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x< 6\\x< 3\end{cases}}\)\(\Rightarrow x< 3\)
TH2:
\(\orbr{\begin{cases}x-6>0\\3x-9>0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>6\\x>3\end{cases}}\)\(\Rightarrow x>6\)
Vậy \(x< 3\) hoặc \(x>6\)thì \((x-6)(3x-9)>0\)
Học tốt!

2 tháng 4 2020

20.
\((2x-1)(6-x)>0\)
TH1:
\(\orbr{\begin{cases}2x-1>0\\6-x>0\end{cases}\Rightarrow\orbr{\begin{cases}x< \frac{1}{2}\\x< 6\end{cases}}\Rightarrow x< 6}\)
TH2
\(\orbr{\begin{cases}2x-1< 0\\6-x< 0\end{cases}\Rightarrow\orbr{\begin{cases}x>\frac{1}{2}\\x>6\end{cases}}\Rightarrow x>\frac{1}{2}}\)
Vậy \(x< 6\)hoặc \(x>\frac{1}{2}\)thì \((2x-1)(6-x)>0\)
 

8 tháng 9 2017

1) x = 0

2) x = 2

3) không biết (thông cảm)

4) x > 0

5) x < 0

21 tháng 6 2017

a) Ta có: \(x^2\ge0\forall x\in Q\)

\(y^2\ge0\forall x\in Q\)

\(\Rightarrow x^2+y^2+2014\ge2014\forall x\in Q\)

Dấu giá trị nhỏ nhất của biểu thức là 2014, xảy ra khi \(\left\{{}\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

b, Ta có: \(\left(x+30\right)^2\ge0\forall x\in Q\)

\(\left(y-4\right)^2\ge0\forall x\in Q\)

\(\Rightarrow\left(x+30\right)^2+\left(y-4\right)^2+17\ge17\forall x\in Q\)

Dấu giá trị nhỏ nhất của biểu thức là 17, xảy ra khi \(\left\{{}\begin{matrix}\left(x+30\right)^2=0\\\left(y-4\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-30\\y=4\end{matrix}\right.\)

c, Ta có: \(\left(y-9\right)^2\ge0\forall x\in Q\)

\(\left|x-3\right|\ge0\forall x\in Q\)

\(\Rightarrow\left(y-9\right)^2+\left|x-3\right|^2-1\ge-1\forall x\in Q\)

Dấu giá trị nhỏ nhất của biểu thức là -1 xảy ra khi \(\left\{{}\begin{matrix}\left(y-9\right)^2=0\\\left|x-3\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=9\\x=3\end{matrix}\right.\)

21 tháng 6 2017

ghi đề kiểu này khó nhìn quá

4 tháng 1 2018

suy ra x-2 và -4-x^2 cùng dấu
Mà -4-x^2 luôn nhỏ hơn hoặc bằng -4 suy ra -4-x^2 âm
suy ra x-2 âm suy ra x<2
Vậy x thuộc Z và x<2

2 tháng 5 2024

Bạn có thể làm được Bài học tập tại trường Không 

2 tháng 5 2024

1+1=2