Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. x= 1;2
b. x= 1;2;3;4;5;6
c. x= 6;7;8;9;...
d. x= 6;7;8;9;...
e. x= 1;2;3
a) x thuộc{1;-1;2;-2}
b)x thuộc {1;-1;2;-2;3;-3;4;-4;5;-5;6;-6}
c) x thuộc {6;-6;7;-7;...}
d) x thuộc {6:-6:7:-7;...}
f) x thuộc { 2;3;4;5;...}
e) x thuộc {0;1;2;3}
g) x thuộc {0;1}
\((x-6)(3x-9)>0\)
TH1:
\(\orbr{\begin{cases}x-6< 0\\3x-9< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x< 6\\x< 3\end{cases}}\)\(\Rightarrow x< 3\)
TH2:
\(\orbr{\begin{cases}x-6>0\\3x-9>0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>6\\x>3\end{cases}}\)\(\Rightarrow x>6\)
Vậy \(x< 3\) hoặc \(x>6\)thì \((x-6)(3x-9)>0\)
Học tốt!
20.
\((2x-1)(6-x)>0\)
TH1:
\(\orbr{\begin{cases}2x-1>0\\6-x>0\end{cases}\Rightarrow\orbr{\begin{cases}x< \frac{1}{2}\\x< 6\end{cases}}\Rightarrow x< 6}\)
TH2
\(\orbr{\begin{cases}2x-1< 0\\6-x< 0\end{cases}\Rightarrow\orbr{\begin{cases}x>\frac{1}{2}\\x>6\end{cases}}\Rightarrow x>\frac{1}{2}}\)
Vậy \(x< 6\)hoặc \(x>\frac{1}{2}\)thì \((2x-1)(6-x)>0\)
a) Ta có: \(x^2\ge0\forall x\in Q\)
\(y^2\ge0\forall x\in Q\)
\(\Rightarrow x^2+y^2+2014\ge2014\forall x\in Q\)
Dấu giá trị nhỏ nhất của biểu thức là 2014, xảy ra khi \(\left\{{}\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
b, Ta có: \(\left(x+30\right)^2\ge0\forall x\in Q\)
\(\left(y-4\right)^2\ge0\forall x\in Q\)
\(\Rightarrow\left(x+30\right)^2+\left(y-4\right)^2+17\ge17\forall x\in Q\)
Dấu giá trị nhỏ nhất của biểu thức là 17, xảy ra khi \(\left\{{}\begin{matrix}\left(x+30\right)^2=0\\\left(y-4\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-30\\y=4\end{matrix}\right.\)
c, Ta có: \(\left(y-9\right)^2\ge0\forall x\in Q\)
\(\left|x-3\right|\ge0\forall x\in Q\)
\(\Rightarrow\left(y-9\right)^2+\left|x-3\right|^2-1\ge-1\forall x\in Q\)
Dấu giá trị nhỏ nhất của biểu thức là -1 xảy ra khi \(\left\{{}\begin{matrix}\left(y-9\right)^2=0\\\left|x-3\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=9\\x=3\end{matrix}\right.\)
1,(x+2) x (x-1)
= (x+2) . x - x+2
= x2 + 2x - x + 2
= x2+ 2x + (-x) +2
= x2 + x + 2
mà (x+2).(x-1)>0
=>x2 + x + 2>0.
=>x2 + x > 1
=>x2 >1-x
=> x2>-x-1
do đó: không tìm được x cụ thể.
2,