K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

khó thì thôi-.-

Bn tên j để mik chửi cho dễ:)

a,ta có:(x2+7x+3)2=x4+14x3+55x2+42x+9(8x+4)(x2+5x+2)=8x3+44x2+36x+8=>x4+14x3+55x2+42x+9=8x3+44x2+36x+8<=>x4+6x3+11x2+6x+1=0xét x=0 ko phải no của ptxét x khác 0\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)+6\left(x+\frac{1}{x}\right)+11=0\)\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+6\left(x+\frac{1}{x}\right)+9=0\Leftrightarrow\left(x+\frac{1}{x}+3\right)^2=0\Rightarrow x=\frac{-3+\sqrt{5}}{2};\frac{-3-\sqrt{5}}{2}\)d,xét n=1=> mệnh đề luôn đúnggiả sử mệnh đề...
Đọc tiếp

a,

ta có:

(x2+7x+3)2=x4+14x3+55x2+42x+9

(8x+4)(x2+5x+2)=8x3+44x2+36x+8

=>x4+14x3+55x2+42x+9=8x3+44x2+36x+8

<=>x4+6x3+11x2+6x+1=0

xét x=0 ko phải no của pt

xét x khác 0

\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)+6\left(x+\frac{1}{x}\right)+11=0\)

\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+6\left(x+\frac{1}{x}\right)+9=0\Leftrightarrow\left(x+\frac{1}{x}+3\right)^2=0\Rightarrow x=\frac{-3+\sqrt{5}}{2};\frac{-3-\sqrt{5}}{2}\)

d,

xét n=1=> mệnh đề luôn đúng

giả sử mệnh đề đúng với n=k

ta sẽ cm nó đúng với n=k+1

với n=k+1

=>(n+1)(n+2)..(n+n)=2n(n+1)(n+2)...(2n-1)

=2(k+1)(k+2).....2k chia hết cho 2k+1

=>(n+1)(n+2)(n+3)...(n+n) chia hết cho 2n

c,

ta có:

\(\left(1+x\right)\left(1+\frac{y}{x}\right)=1+x+y+\frac{y}{x}\ge1+y+2\sqrt{y}=\left(\sqrt{y}+1\right)^2\)

\(\Rightarrow\left(1+x\right)\left(1+\frac{y}{x}\right)\left(1+\frac{9}{\sqrt{y}}\right)^2\ge\left[\left(\sqrt{y}+1\right)\left(1+\frac{9}{\sqrt{y}}\right)\right]^2\)

\(=\left(\sqrt{y}+\frac{9}{\sqrt{y}}+10\right)^2\ge\left(6+10\right)^2=256\left(Q.E.D\right)\)

dấu = xảy ra khi y=9;x=3

b,

x7+xy6=y14+y8

<=>(x7-y14)+(xy6-y8)=0

<=>(x-y2)(x+y2)+y6(x-y2)=0

<=>(x-y2)(x+y2+y6)=0

xét x=y2

\(\Rightarrow\sqrt{4x+5}+\sqrt{y^2+8}=\sqrt{4y^2+5}+\sqrt{y^2-1}\)

\(\Rightarrow\sqrt{4y^2+5}+\sqrt{y^2+8}=6\)

\(\Rightarrow\left(\sqrt{4y^2+5}-3\right)+\left(\sqrt{y^2+8}-3\right)=0\)

\(\Rightarrow\frac{4y^2-4}{\sqrt{4y^2+5}+3}+\frac{y^2-1}{\sqrt{y^2+8}+3}=0\)

\(\Rightarrow\left(y^2-1\right)\left(\frac{4}{\sqrt{4y^2+5}+3}+\frac{1}{\sqrt{y^2+8}+3}\right)=0\)

\(\frac{4}{\sqrt{4y^2+5}+3}+\frac{1}{\sqrt{y^2+8}+3}>0\Rightarrow y^2=1\Rightarrow\left(x;y\right)=\left(1;1\right);\left(1;-1\right)\)

xét x+y2+y6=0

<=>x=-y2-y6

lại có:

x7+xy6=y14+y8

<=>x(x6+y6)=y14+y8

<=>-(y2+y6)(x6+y6)=y14+y8

mà \(-\left(y^2+y^6\right)\left(x^6+y^6\right)\le0\le y^{14}+y^8\)

<=>y=0=>x=0(ko thỏa mãn)

vậy nghiệm của pt:(x;y)=(1;-1);(1;1)

1
14 tháng 10 2017

câu hệ sao từ x^7-y^14 sao xuống đc (x-y^2)(x+y^2) ? 

2 tháng 9 2017

a. Ta có:\(\frac{x}{y}\sqrt{\frac{y^2}{x^4}=}\) \(\frac{x}{y}.\frac{\left|y\right|}{x^2}=\frac{x.y}{x^2y}\)\(=\frac{1}{x}\)(Vì \(x\ne0;y>0\))

2 tháng 9 2017

\(3x^2\sqrt{\frac{8}{x^2}}=3x^2\frac{2\sqrt{2}}{\left|x\right|}=\frac{6x^2\sqrt{2}}{-x}=-6x\sqrt{2}\)( Vì \(x< 0\))

15 tháng 11 2018

2.

a/ Áp dụgn hệ quả bđt cô si,ta có :

\(A=xy+yz+zx\le\dfrac{\left(x+y+z\right)}{3}=\dfrac{a^2}{3}\)

Vậy GTLN A =a^2/3 khi x= y =z =a/3

b/Áp dụng BĐT Cô-Si dạng Engel,ta có :

\(B=\dfrac{x^2}{1}+\dfrac{y^2}{1}+\dfrac{z^2}{z}\ge\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{a^2}{3}\)

Vậy GTNN của B = a^2/2 khi x=y=z =a/3

15 tháng 11 2018

\(B=\dfrac{3x}{1-x}+\dfrac{4\left(1-x\right)}{x}+7\ge2\sqrt{\dfrac{3x}{1-x}.\dfrac{4\left(1-x\right)}{x}}+7=7+4\sqrt{3}=\left(2+\sqrt{3}\right)^2\)

Vậy min B = \(\left(2+\sqrt{3}\right)^2\) khi \(\dfrac{3x}{1-x}=\dfrac{4\left(1-x\right)}{x}\Leftrightarrow x=\left(\sqrt{3}-1\right)^2\)

1 tháng 10 2019

Ta co:\(\Sigma\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}=\Sigma\frac{\left(y+\frac{1}{z}\right)^2}{z+\frac{1}{x}}\ge\frac{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}=x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)Ta lai co:

\(\Sigma x+\Sigma\frac{1}{x}=\Sigma\left(x+\frac{1}{4x}\right)+\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3+\frac{3}{4}.\frac{9}{x+y+z}\ge3+\frac{3}{4}.\frac{9}{\frac{3}{2}}=\frac{15}{2}\)

Dau '=' xay ra khi \(x=y=z=\frac{1}{2}\)

Vay \(P_{min}=\frac{15}{2}\)khi \(x=y=z=\frac{1}{2}\)

1 tháng 10 2019

mấy câu trên bn giải đc k ak ? Giải giúp mik vs :3

24 tháng 7 2020

Bằng 4

23 tháng 7 2020

Câu 1 :

a, Đáp án nên nó đúng nhoa

b, MinA = 2016,75 .

Câu 2 :

a, - \(\left[{}\begin{matrix}x=\pm1\\x=3\end{matrix}\right.\)

b, - Với m bằng - 3 .

Câu 3 :

a, \(\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)

b, Hỏi tí vế 2 là bằng 4 hay - 4 .

Mong mọi người giúp đỡ. Em sắp thi tuyển sinh. Sau đây là đề thi thử của tỉnh Bình Dương năm 2017-2108 phần đại số. Câu1 Tính a) 3x2 - x -2 \(\sqrt{3x^2-x-2}\)= 1 b) \(\dfrac{x^4-3x^2+2}{\left(x+1\right)\left(x-\sqrt{2}\right)}=0\) c) \(\left\{{}\begin{matrix}\dfrac{1}{X}+\dfrac{3}{Y}=6\\\dfrac{4Y+X}{XY}=12\end{matrix}\right.\) Câu2: Cho mX2 - (m+2)X + m + 4 =0 ( ĐK: m≠0) a) Chứng minh rằng phương trình luôn có nghiệm ∀X ∈R...
Đọc tiếp

Mong mọi người giúp đỡ. Em sắp thi tuyển sinh. Sau đây là đề thi thử của tỉnh Bình Dương năm 2017-2108 phần đại số.

Câu1 Tính

a) 3x2 - x -2 \(\sqrt{3x^2-x-2}\)= 1

b) \(\dfrac{x^4-3x^2+2}{\left(x+1\right)\left(x-\sqrt{2}\right)}=0\)

c) \(\left\{{}\begin{matrix}\dfrac{1}{X}+\dfrac{3}{Y}=6\\\dfrac{4Y+X}{XY}=12\end{matrix}\right.\)

Câu2: Cho

mX2 - (m+2)X + m + 4 =0 ( ĐK: m≠0)

a) Chứng minh rằng phương trình luôn có nghiệm ∀X ∈R

b) Tim m sao cho phương trình không nhận nghiệm là 0. Đồng thời tính nghiệm phương trình khi m= X- 4

c) Tìm m để có 2 nghiệm đối nhau.

d) Giả sử X,Y là nghiệm phương trình trên. Khi đó, tìm m để thoả:

\(\dfrac{1}{\sqrt{X}}+\dfrac{1}{\sqrt{Y}}=\sqrt{X^2+Y^2}\)

Câu3 Hai xe suất phát từ A đến B. Xe nhất đi trước xe thứ 2 3h. Đi được đoạn đường thi gặp trục trặc nên trong 15’ vẫn tốc của xe đã giảm đi 20km/h so với ban đầu . Chính vì vậy xe thứ hai đã đến trước xe thứ nhất 5’. Biết vận tốc xe thứ 2 lớn hơn xe thứ nhất là 40km/h.

a) Tính vận tốc ban đàu của hai xe.

b) Đoạn đường trong suốt khoảng thời gian trục trặc của xe nhất là bao nhiêu km? Khi đó xe thứ 2 còn bao nhiêu giờ nữa mới đến B?

Câu4 A=\(\left(\left(\dfrac{\left(1+\sqrt{X^{ }}\right)^2}{x+1}+\dfrac{\left(1-\sqrt{X}\right)^2}{x+1}\right)x^3\right)^2\)- 4x6 + 8x5 -8. ( ĐK X≠1 và X>0)

a) Rút gọn biểu thức A.

b) Tính khi A= x + 8x5

c)Tìm GTNN của A

Câu5 Cho đồ thị y=2x2 -4 (P) và (d): y=4x+9.

a) Vẽ (P)

b) Viết phương trình (a) sao cho tiếp xúc với (P) và song song với (d).

c) Cho (d1) y=5x-10 và (d2) y=0,5x+0,25. Tìm điểm đồng quy của của hai đường thẳng trên với (a).

1
13 tháng 5 2018

Mọi người ơi đề bài câu 2 có tí sai xót:

mx2 - 2(m+2)x +m +4 =0 ( ĐK m≠0)

Mọi người bõ qua sai xót thương tình giúp em nha.