Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số người may là x
Gọi số ngày hoàn thành là y
Gọi tỉ lệ là a
Theo đề toán, ta có:tỉ lệ a = 12.5 = 60
=> Nếu y = 4 => x = \(\frac{60}{4}\)= 15
Và 15 - 12 = 3
Vậy cần thêm 3 người để may lô hàng đó sớm một ngày
(Bài này mình k chắc đúng k nhé, mình chưa học tỉ lệ nghịch hehe)
Gọi số người may là x
Gọi số ngày hoàn thành là y
Gọi tỉ lệ là z
Theo đề bài, ta có :
tỉ lệ a = 12.5=60
Suy ra Nếu y =4 thì x = 15
Và 15-12=3
Vậy đáp số là 3 người
K MÌNH NHA THANKS GOODBYE@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
Hình bạn tự vẽ.
Đây là lời giải của mình :
Trước hết biết được góc A thì tính được \(\widehat{ABC}+\widehat{ACB}=180^o-\widehat{A}=80^o\)
\(\widehat{ACx}=\widehat{A}+\widehat{ABC}=100^o+\widehat{ABC}\) ( góc ngoài tam giác )
\(\Rightarrow\frac{\widehat{ACx}}{2}=\widehat{ACN}=50^o+\frac{\widehat{ABC}}{2}\)
Do đó \(\widehat{BCN}=\widehat{ACB}+\widehat{ACN}=50^o+\frac{\widehat{ABC}}{2}+\widehat{ACB}\)
BI là phân giác góc ABC nên \(\widehat{NBC}=\frac{\widehat{ABC}}{2}\)
Xét \(\Delta BCN:\)
\(\widehat{BNC}=180^o-\left(\widehat{NBC}+\widehat{BCN}\right)=180^o-\left(\frac{\widehat{ABC}}{2}+\frac{\widehat{ABC}}{2}+\widehat{ACB}+50^o\right)\)
\(=180^o-\left(\widehat{ACB}+\widehat{ABC}+50^o\right)=180^o-\left(80^o+50^o\right)=50^o\)
Vậy ...
Bài làm
a) Xét ∆ABC vuông tại B có:
^BAC + ^C = 90°
Hay ^BAC + 30° = 90°
=> ^BAC = 60°
Vì AD là phân giác của góc BAC.
=> ^DAC = 60°/2 = 30°
Xét tam giác ADC có:
^DAC + ^ACD + ^ADC = 180°
Hay 30° + 30° + ^ADC = 180°
=> ^ADC = 180° - 30° - 30°
=> ^ADC = 120°
b) Xét tam giác ABD và tam giác AED có:
AB = AE ( gt )
^BAD = ^EAD ( Do AD phân giác )
Cạnh AD chung.
=> ∆ABD = ∆AED ( c.g.c )
c) Vì ∆ABD = ∆AED ( cmt )
=> ^ABD = ^AED = 90°
=> DE vuông góc với AC tại E (1)
Ta có: ^DAC = ^DCA = 30°
=> ∆DAC cân tại D.
=> AD = DC
Xét tam giác DEA và tam giác DEC có:
Góc vuông: ^DEA = ^DEC ( = 90° )
Cạnh huyền AD = DC ( cmt )
Góc nhọn: ^DAC = ^DCA ( cmt )
=> ∆DEA = ∆DEC ( g.c.g )
=> AE = EC
=> E là trung điểm của AC. (2)
Từ (1) và (2) => DE là trung trực của AC ( đpcm )