Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D) 64x^3-1/8y^3
= (4x)^3 + (1/2y)^3
= ( 4x + 1/2y ) [ (4x)^2 - 4x.1/2y + (1/2y)^2 ]
E) 125x^6-27y^9
( câu này mik chưa rõ nên vx chưa tek giải cho bn )
HOk tốt nhé
Bạn sai đề rồi :
a ) \(8y^3-125\)
\(=\left(2y\right)^3-5^3\)
\(=\left(2y-5\right)\left(4y^2+2y.5+5^2\right)\)
\(=\left(2y-5\right)\left(4y^2+10y+25\right)\)
b) Ta thấy \(8z^3=\left(2z\right)^3\)còn \(27=3^3\)
Trở thành : \(\left(2z\right)^3+3^3\)
Rồi bạn bạn tự làm nha
Thanks
\(a,x^3+8y^3=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
\(b,a^6-b^3=\left(a^2-b\right)\left(a^4+a^2b+b^2\right)\)
\(c,8y^3-125=\left(2y-5\right)\left(4y^2+10y+25\right)\)
\(d,8z^3+27=\left(2z+3\right)\left(4z^2-6z+9\right)\)
\(a)x^3+8y^3=x^3+\left(2y\right)^3=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
\(b)a^6-b^3=\left(a^3-b^3\right)\left(a^3+b^3\right)\)
\(c)8y^3-125=\left(2y\right)^3-5^3=\left(2y-5\right)\left(4y^2+10y+25\right)\)
\(d)8z^3+27=\left(2z\right)^3+3^3=\left(2x+3\right)\left(4z^2-6z+9\right)\)
a) \(x^3+8y^3=x^3+\left(2y\right)^3=\left(2y+x\right)\left(4y^2-2xy+x^2\right)\)
b) \(a^6-b^3=\left(a^2\right)^3-b^3=\left(a^2-b\right)\left(b^2+a^2b+a^4\right)\)
c) \(8y^3-125=\left(2y\right)^3-5^3=\left(2y-5\right)\left(4y^2+10y+25\right)\)
d) \(8x^3+27=\left(2x\right)^3+3^3=\left(2x+3\right)\left(4x^2-6x+9\right)\)
a) x3+8y3x3+8y3
=(x+2y)(x2−2xy+4y2)
b) a6−b3
=(a2)3-b3
=(a2-b) (a4+a2b+b2)
c) 8y3−125
=(2y−5)(4y2+10y+25)
d) 8x3+27
=(2x+3)(4x2−6x+9)
hok tốt!!!
B1:
a) \(1001^2=\left(1000+1\right)^2\)
\(=1000^2+2.1000+1=1000000+2000+1\)
= \(1002001\)
b) \(29,9.30,1\)
= \(\left(30-0,1\right)\left(30+0,1\right)\)
= \(30^2-0,1^2=900-0,01=899,99\)
c) \(31,8^2-2.31,8.21,8+21,8^2\)
= \(\left(31,8-21,8\right)^2=10^2=100\)
B2:
a) \(x^3+8y^3=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
b) \(a^6-b^3=\left(a^2\right)^3-b^3\)
= \(\left(a^2-b\right)\left(a^4+a^2b+b^2\right)\)
c) \(8y^3-125=\left(2y\right)^3-5^3\)
= \(\left(2y-5\right)\left(4y^2+10y+25\right)\)
d) \(8z^3+27=\left(2z\right)^3+3^3\)
= \(\left(2z+3\right)\left(4z^2-6z+9\right)\)
B3:
a) A = \(x^2-20x+101\)
= \(x^2-20x+100+1\)
= \(\left(x-10\right)^2+1\ge1\) với mọi x
MinA = 1 khi và chỉ khi x = 10
b) B = \(4a^2+4a+2\)
= \(4a^2+4a+1+1\)
= \(\left(2a+1\right)^2+1\ge1\) với mọi x
MinB = 1 khi và chỉ khi a = \(-\dfrac{1}{2}\)
a ) \(x^3+8y^3=x^3+\left(2y\right)^3=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
b ) \(a^6-b^3=\left(a^2\right)^3-b^3=\left(a^2-b\right)\left(a^4+a^2b+b^2\right)\)
c ) \(8y^3-125=\left(2y\right)^3-5^3=\left(2y-5\right)\left(4y^2+10y+25\right)\)
d ) \(8z^3+27=\left(2z\right)^3+3^3=\left(2z+3\right)\left(4z^2-6z+9\right)\)
a) x3 + 8y3 = x3 + (2y)3 = (x+2y)(x2+2xy+4y2)
b) a6 - b3 = (a2)3 - b3 = (a2-b)(a4 + a2b + b2)
c) 8y3 - 125 = (2y)3 - 53 = (2y - 5)(4y2 + 10y + 25)
d) 8x3 + 27 = (2z)3 + 33 = (2z + 3)(4z2 - 6x + 9)
1/ x^2 +4xy +4y^2 = (x +2y)^2
2/ -x^3 +9x^2 -27x+27= - (x^3 -9x^2+27x-27) = - (x-3)^3
3/ 8x^6 +36x^4y+54^2y^2+27y^3 = (2x^2+3y)^3
4/ x^3 - 6x^2y+12xy^2 -8y^3= (x-2y)^3
a) \(8x^3-27y^6\)
\(=\left(2x\right)^3-\left(3y^2\right)^3\)
\(=\left(2x-3y^2\right)\left[\left(2x\right)^2+2x.3y+\left(3y\right)^2\right]\)
\(=\left(2x-3y^2\right)\left(4x^2+6xy+9y^2\right)\)
b) \(a^3b^3c^3-1\)
\(=\left(abc\right)^3-1^3\)
\(=\left(abc-1\right)\left(a^2b^2c^2+abc+1\right)\)
c) \(64x^3+\dfrac{1}{8}y^3\)
\(=\left(4x\right)^3+\left(\dfrac{1}{2}y\right)^3\)
\(=\left(4x+\dfrac{1}{2}y\right)\left[\left(4x\right)^2+4x.\dfrac{1}{2}y+\left(\dfrac{1}{2}y\right)^2\right]\)
\(=\left(4x+\dfrac{1}{2}y\right)\left(4x^2+2xy+\dfrac{1}{4}y^2\right)\)
d) \(125+y^3\)
\(=5^3+y^3\)
\(=\left(5+y\right)\left(25-5y+y^2\right)\)
e) \(a^6-b^6\)
\(=\left(a^3\right)^2-\left(b^3\right)^2\)
\(=\left(a^3-b^3\right)\left(a^3+b^3\right)\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)\left(a+b\right)\left(a^2-ab+b^2\right)\)
f) \(4x^2-9\left(3x+5\right)^2\)
\(=\left(2x\right)^2-\left[3\left(3x+5\right)\right]^2\)
\(=\left[2x-3\left(3x+5\right)\right]\left[2x+3\left(3x+5\right)\right]\)
\(=\left(2x-9x-15\right)\left(2x+9x+15\right)\)
\(=\left(-7x-15\right)\left(11x+15\right)\)
\(x^3+27y^3=x^3+\left(3y\right)^3=\left(x+3y\right)\left(x^2-3xy+9y^2\right)\)
\(a^6-8b^3=\left(a^2\right)^3-\left(2b\right)^3=\left(a^2-2b\right)\left(a^4+2a^2b+4b^2\right)\)
\(8y^3-125=\left(2y\right)^3-5^3=\left(2y-5\right)\left(4y^2+10y+25\right)\)
\(8z^3+x^3=\left(2z\right)^3+x^3=\left(2z+x\right)\left(4z^2-2xz+x^2\right)\)