Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
a) 25.8 = 25.23 = 28
b) 43-23+52 = 64-8+25 =81 = 92
c) 16 : 22 = 24:22 = 22
d) 172-152 = 289 - 225 = 64 = 82
2) 990 = 1n < 24 < 43 < 34
Bg
a) 43 ÷ 25 = (22)3 ÷ 25
= 22.3 ÷ 25
= 26 ÷ 25
= 26 - 5
= 21
= 2
b) 97 ÷ 32 = 97 ÷ 9
= 97 ÷ 91
= 97 - 1
= 96
c) 2.22.23.24. … .2100
= 21 + 2 + 3 + 4 +…+ 100
Đặt A = 1 + 2 + 3 + 4 +…+ 100 (A có 100 số hạng)
=> A = \(\frac{100.\left(100+1\right)}{2}\)
=> A = \(\frac{100.101}{2}\)
=> A = \(\frac{10100}{2}\)
=> A = 5050
Quay lại với đề bài:
= 25050
a ) \(4^3\div2^5=2^6\div2^5=2^1\)
b ) \(9^7\div3^2=9^7\div9=9^6\)
c ) \(2.2^2.2^3.2^4....2^{100}=2^{1+2+3+....+100}\)
Ta có : \(1+2+3+....+100=\frac{\left(100+1\right).100}{2}=5050\)
\(\Rightarrow2^{1+2+3+....+100}=2^{5050}\)
a) 24 và 42.Ta có: b)316 và 275.Ta có:
24=(22)2=42 275=(33)5=315<316
=>24=42.Vậy.. =>275<316.Vậy...
c)233 và 322.Ta có: d)chịu
233=(23)11=811
322=(32)11=911>811.
=>233<322.Vậy....
a) \(2^4\)
\(4^2=\left(2^2\right)^2=2^4\)
\(\Rightarrow2^4=4^2\)
b) \(3^{16}=3^{16}\)
\(27^5=\left(3^3\right)^5=3^{15}\)
\(\Rightarrow3^{16}>27^5\)
a, a.a.a^2.a^4
=a^8
b, 4^3.2^4.2^5.16
=(2^2)^3.2^4.2^5.2^3
=2^6.2^4.2^5.2^3
=2^18
c, 5^2.5^3.125
=5^2.5^3.5^3
=5^8
d, 3^2.9.81
=3^2.3^2.3^4
=3^8
e, 2^3.2^3.18^2
=2^6.(2.3^2)^2
=2^6.2^2.3^4
=2^8.3^4
a)a.a.a^2.a^4 = a^2.a^2.a^4=a^8
b)4^3.2^4.2^5.16
=(2^2)^3.2^4.2^5.2^4
=2^6.2^4.2^4.2^4
=2^18
c)3^2.9.81
=3^2.3^2.3^4
=3^8
Bài 1 :
a) \(\left(2^{17}+17^2\right).\left(9^{15}-3^{15}\right).\left(2^4-4^2\right)\)
\(=\left(2^{17}+17^2\right).\left(9^{15}-3^{15}\right).\left(16-16\right)\)
\(=\left(2^{17}+17^2\right).\left(9^{15}-3^{15}\right).0\)
\(=0\)
câu b sai đề rồi bạn , mình sủa lại đề nha :
b) \(\left(8^{2017}-8^{2015}\right)\div\left(8^{2014}.8\right)\)
\(=\left(8^{2017}-8^{2015}\right)\div8^{2015}\)
\(=8^{2017}\div8^{2015}-8^{2015}\div8^{2015}\)
\(=8^2-1\)
\(=64-1\)
\(=63\)
c) \(\left(1^3+2^3+3^4+4^5\right).\left(1^3+2^3+3^3+4^3\right).\left(3^8-81^2\right)\)
\(=\left(1^3+2^3+3^4+4^5\right).\left(1^3+2^3+3^3+4^3\right).\left[3^8.\left(3^4\right)^2\right]\)
\(=\left(1^3+2^3+3^4+4^5\right).\left(1^3+2^3+3^3+4^3\right).\left[3^8-3^8\right]\)
\(=\left(1^3+2^3+3^4+4^5\right).\left(1^3+2^3+3^3+4^3\right).0\)
\(=0\)
d) \(\left(2^8+8^3\right)\div\left(2^5.2^3\right)\)
\(=\left[2^8+\left(2^3\right)^3\right]\div2^8\)
\(=\left[2^8+2^9\right]\div2^8\)
\(=2^8\div2^8+2^9\div2^8\)
\(=1+2\)
\(=3\)
Bài 2 :
a) \(125^5\div25^3=\left(5^3\right)^5\div\left(5^2\right)^3=5^{15}\div5^6=5^9\)
b) \(27^6\div9^3=\left(3^3\right)^6\div\left(3^2\right)^3=3^{18}\div3^6=3^{12}\)
c) \(4^{20}\div2^{15}=\left(2^2\right)^{20}\div2^{15}=2^{40}\div2^{15}=2^{25}\)
d) \(24^n\div2^{2n}=24^n\div4^n=6^n\)
Bài 1 :
a/ \(a^3.a^9=a^{3+9}=a^{12}\)
b/\(\left(a^5\right)^7=a^{5.7}=a^{35}\)
c/ \(\left(a^6\right).4.a^{12}=a^{24}.a^{12}.4=a^{24+12}.4=a^{36}.4\)
d/ \(\left(2^3\right)^5.\left(2^3\right)^3=2^{15}.2^9=2^{15+9}=2^{24}\)
e/ \(5^6:5^3+3^3.3^2\)
\(=5^3+3^5=125+243=368\)
i/ \(4.5^2-2.3^2\)
\(=2^2.5^2-2.3^2\)
\(=2^2.25-2^2.14\)
\(=2^2.\left(25-14\right)\)
\(=2^2.11\)
\(=4.11=44\)
Bài 1:
a) 25.8 = 25.23 = 28
b) 43 - 23 + 52 = 64 - 8 + 25= 81 = 34
c) 16:22 = 24 : 22 = 22
d) 172 - 152 = 289 - 225 = 64 = 43
Bài 2:
ta có:24 = 16
34 = 81 ; 43 = 64; 990 = 1; 1n = 1
=> 34 > 43 > 24 > 990 = 1n