K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2018

Bài 1:

\(a,27x^3+27x^2+9x+1\)

\(=\left(3x\right)^3+3.\left(3x\right)^2.1+3.3x.1^2+1^3\)

\(=\left(3x+1\right)^3\)

\(b,x^3+3\sqrt{2}x^2y+6xy^2+2\sqrt{2}y^3\)

\(=x^3+3.x^2.\sqrt{2}y+3.x.\left(\sqrt{2}y\right)^2+\left(\sqrt{2}y\right)^3\)

\(=\left(x+\sqrt{2}y\right)^3\)

Bài 2:

\(a,x^3+9x^2+27x+27=0\)

\(\Leftrightarrow\left(x+3\right)^3=0\)

\(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

\(b,\left(x+1\right)^3-x\left(x-2\right)^2+x-1=0\)

\(\Leftrightarrow x^3+3x^2+3x+1-x^3-4x^2+4x+x-1=0\)

\(\Leftrightarrow-x^2+8x=0\)

\(\Leftrightarrow-x\left(x-8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=8\end{matrix}\right.\)

12 tháng 9 2018

1)

a) = (3x+1)3

b) (x+\(\sqrt{2}\) )3

2)

a)\(x^3+9x^2+27x+27=0\\ \left(x+3\right)^3=0\\ =>x=-3\)

b) Bài cuối bạn tự làm nhé! Mình mắc học bài

# Chúc bạn học tốt !

23 tháng 8 2019

a) (3x-1)3 Xem lại đề câu a là -1

b) (x-1)3

c) (1/3 + x)(1/9 -x.1/3 +x2)

d) (0,1-10x)(0,01 + x +100x2)

AH
Akai Haruma
Giáo viên
11 tháng 9 2020

Lời giải:

a) $x^3+3x^2y+x+3xy^2+y+y^3$

$=(x^3+3x^2y+3xy^2+y^3)+(x+y)$

$=(x+y)^3+(x+y)=(x+y)[(x+y)^2+1]$

b) $x^3+y(1-3x^2)+x(3y^2-1)-y^3$

$=(x^3-3x^2y+3xy^2-y^3)-(x-y)$
$=(x-y)^3-(x-y)=(x-y)[(x-y)^2-1]=(x-y)(x-y-1)(x-y+1)$

c)

$27x^3+27x^2+9x+1=(3x+1)^3$

d)

$x(x+1)^2+x(x-5)-5(x+1)^2$

$=x(x+1)^2-5(x+1)^2+x(x-5)$
$=(x-5)(x+1)^2+x(x-5)=(x-5)[(x+1)^2+x]$

$=(x-5)(x^2+3x+2)=(x-5)(x+1)(x+2)$

5 tháng 9 2020

a, \(x^3-3x^2+3x-1=\left(x-1\right)^3\)

b, \(1-9x+27x^2-27x^3=-\left(3x-1\right)^3\)

5 tháng 9 2020

Mình có làm ở câu dưới rồi . Bạn tham khảo link :

https://olm.vn/hoi-dap/detail/231817932107.html

e:

Tham khảo: undefined

a: \(\Leftrightarrow x^2-2x+1+4x^2+4x+4-5x^2+5=0\)

\(\Leftrightarrow2x+10=0\)

hay x=-5

24 tháng 10 2020

\(x^3+\frac{1}{x^3}=x^3+\left(\frac{1}{x}\right)^3=\left(x+\frac{1}{x}\right)\left(x^2-x+\frac{1}{x^2}\right)\)( x khác 0 )

\(-x^3+9x^2-27x+27=-\left(x^3-9x^2+27x-27\right)=-\left(x-3\right)^3\)

\(\left(xy+1\right)^2-\left(x-y\right)^2=\left(xy+1-x+y\right)\left(xy+1+x-y\right)\)

NV
2 tháng 8 2020

a.

\(\frac{x^2}{4}+x+3=\frac{x^2}{4}+x+1+2=\left(\frac{x}{2}+1\right)^2+2>0;\forall x\)

b.

\(A=-3x^2+2x-5=-3\left(x^2-2.\frac{1}{3}x+\frac{1}{9}\right)-\frac{14}{3}=-3\left(x-\frac{1}{3}\right)^2-\frac{14}{3}\le-\frac{14}{3}\)

\(A_{max}=-\frac{14}{3}\) khi \(x=\frac{1}{3}\)

c.

Đề thiếu (để ý 2 số hạng cuối)

\(A=x^4-2x^3+x^2+3x^2-6x+3-1\)

\(=\left(x^2-x\right)^2+3\left(x-1\right)^2-1\ge-1\)

\(A_{min}=-1\) khi \(x=1\)

d.

\(27x^2-\frac{9}{2}x+\frac{3}{16}=3\left(9x^2-\frac{3}{2}x+\frac{1}{16}\right)=3\left(3x-\frac{1}{4}\right)^2\)

e.

\(=\left[\left(b+c\right)+a\right]^2+\left[\left(b+c\right)-a\right]^2+\left[a-\left(b-c\right)\right]^2+\left[a+\left(b-c\right)\right]^2\)

\(=2\left(b+c\right)^2+2a^2+2a^2+2\left(b-c\right)^2\)

\(=4a^2+2b^2+4bc+2c^2+2b^2-4bc+2c^2\)

\(=4\left(a^2+b^2+c^2\right)\)

f.

\(\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)

\(=\left(a^2c^2+b^2d^2+2ac.bd\right)+\left(a^2d^2+b^2c^2-2ad.bc\right)\)

\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

12 tháng 8 2021

7, \(27x^3+y^3=\left(3x+y\right)\left(9x^2-3xy+y^2\right)\)

8, \(8x^3-\frac{1}{125}y^3=\left(2x-\frac{1}{5}y\right)\left(4x^2+\frac{2}{5}xy+\frac{1}{25}y^2\right)\)

9, ĐK x >= 0 

\(x-2\sqrt{x}-3=x-3\sqrt{x}+\sqrt{x}-3\)

\(=\sqrt{x}\left(\sqrt{x}+1\right)-3\left(\sqrt{x}+1\right)=\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)\)

10, \(-4x^2-4x+10=-\left(4x^2+4x+1\right)+11\)

\(=-\left[\left(2x+1\right)^2-11\right]=-\left(2x+1-\sqrt{11}\right)\left(2x+1+\sqrt{11}\right)\)

11;12 xem lại đề

13, \(-x^3+6xy^2-12xy^2+8y^3=-\left(x^3-6xy^2+12xy^2-8y^3\right)=-\left(x-2y\right)^3\)

12 tháng 8 2021

Trả lời:

7, \(27x^3+y^3=\left(3x+y\right)\left(9x^2-3xy+y^2\right)\)

8, \(8x^3-\frac{1}{125}y^3=\left(2x-\frac{1}{5}y\right)\left(4x^2+\frac{2}{5}xy+\frac{1}{25}y^2\right)\)

9, \(x-2\sqrt{x}-3\left(ĐK:x\ge0\right)\)

\(=x-3\sqrt{x}+\sqrt{x}-3=\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}-3\right)=\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)\)

10, \(10-4x-4x^2=-\left(4x^2+4x-10\right)=-\left(4x^2+4x+1-11\right)=-\left[\left(2x+1\right)^2-11\right]\)

\(=-\left(2x+1\right)^2+11=-\left[\left(2x+1\right)^2-11\right]=-\left(2x+1-\sqrt{11}\right)\left(2x+1+\sqrt{11}\right)\)

11,sửa đề:  \(15x\left(x-3y\right)+20y\left(3y-x\right)=15x\left(x-3y\right)-20y\left(x-3y\right)=5\left(x-3y\right)\left(3x-4y\right)\)

12, \(25x^2-2=\left(5x-\sqrt{2}\right)\left(5x+\sqrt{2}\right)\)

13, sửa đề: \(-x^3+6x^2y-12xy^2+8y^3=-\left(x^3-6x^2y+12xy^2-8y^3\right)=-\left(x-2y\right)^3\)

a) Ta có: \(x^2+2x+1\)

\(=x^2+2\cdot x\cdot1+1^2\)

\(=\left(x+1\right)^2\)

b) Ta có: \(1-2y+y^2\)

\(=y^2-2\cdot y\cdot1+1^2\)

\(=\left(y-1\right)^2\)

c) Ta có: \(x^3-3x^2+3x-1\)

\(=x^3-x^2-2x^2+2x+x-1\)

\(=x^2\left(x-1\right)-2x\left(x-1\right)+\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-2x+1\right)\)

\(=\left(x-1\right)^3\)

d) Ta có: \(27+27x+9x^2+x^3\)

\(=x^3+3x^2+6x^2+18x+9x+27\)

\(=x^2\left(x+3\right)+6x\left(x+3\right)+9\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2+6x+9\right)\)

\(=\left(x+3\right)^3\)

e) Ta có: \(8-125x^3\)

\(=2^3-\left(5x\right)^3\)

\(=\left(2-5x\right)\left(4+10x+25x^2\right)\)

f) Ta có: \(64x^3+\frac{1}{8}\)

\(=\left(4x\right)^3+\left(\frac{1}{2}\right)^3\)

\(=\left(4x+\frac{1}{2}\right)\left(16x^2-2x+\frac{1}{4}\right)\)

g) Ta có: \(1-x^2y^4\)

\(=1^2-\left(xy^2\right)^2\)

\(=\left(1-xy^2\right)\left(1+xy^2\right)\)

16 tháng 8 2020

a) \(x^2+2x+1=x^2+2x.1+1^2=\left(x+1\right)^2\)

b) \(1-2y+y^2=1^2-2y.1+y^2=\left(1-y\right)^2\)

c) \(x^3-3x^2+3x-1=\left(x-1\right)^3\)

d) \(27+27x+9x^2+x^3=3^3+3.3^2x+3.3x^2+x^3=\left(3+x\right)^3\)

e) \(8-125x^3=2^3-\left(5x\right)^3=\left(2-5x\right)\left[2^2+2.5x+\left(5x\right)^2\right]=\left(2-5x\right)\left(4+10x+25x^2\right)\)

f) \(64x^3+\frac{1}{8}=\left(4x\right)^3+\left(\frac{1}{2}\right)^3=\left(4x+\frac{1}{2}\right)\left[\left(4x\right)^2-4x.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]=\left(4x+\frac{1}{2}\right)\left(16x^2-2x+\frac{1}{4}\right)\)

Ko chắc ạ!