K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

Ta có: \(\left(x+1\right)\left(x+3\right)-x\left(x+2\right)=7\)

\(\Leftrightarrow x^2+4x+3-x^2-2x=7\)

=>2x+3=7

=>2x=4

hay x=2

Bài 3:

\(A=5x^2-20xy-4y^2+20xy=5x^2-4y^2\)

\(=5\cdot\dfrac{1}{25}-4\cdot\dfrac{1}{4}=\dfrac{1}{5}-1=-\dfrac{4}{5}\)

19 tháng 6 2017

a) \(A=3x\left(10x^2-2x+1\right)-6x\left(5x^2-x-2\right)\)

\(=30x^3-6x^2+3x-30x^3+6x^2+12x\)

\(=15x\)

Thay \(x=15\) vào biểu thức A.

Ta có: \(15\cdot15=225\)

Vậy giá trị biểu thức A tại \(x=15\) là 225.

b) \(5x\left(x-4y\right)-4y\left(y-5x\right)\)

\(=5x^2-20xy-4y^2+20xy\)

\(=5x^2-4y^2\)

Thay \(x=-\dfrac{1}{5};y=-\dfrac{1}{2}\) vào biểu thức B.

Ta có: \(5\cdot\left(-\dfrac{1}{5}\right)^2-4\cdot\left(-\dfrac{1}{2}\right)^2=-\dfrac{4}{5}\)

Vậy giá trị biểu thức B tại \(x=-\dfrac{1}{5};y=-\dfrac{1}{2}\)\(-\dfrac{4}{5}\)

6 tháng 7 2018
https://i.imgur.com/7S8xTCo.jpg
6 tháng 7 2018
https://i.imgur.com/2rCz0qH.jpg
26 tháng 6 2018

2.

a. Ta có: x + y = 5 ⇒ x = 5 - y

Thay vào A ta được:

\(A=3\left(5-y\right)^2+3y^2-2y+6\left(5-y\right).y-100\)

\(A=75-30y+3y^2+3y^2-2y+30y-6y^2-100\)

\(A=75-100=-25\)

b. Ta có: x - y = 7 ⇒ x = 7 + y

Thay x = 7 + y vào A ta được:

\(A=\left(7+y\right)\left(7+y+2\right)+y\left(y-2\right)-2\left(7+y\right).y+37\)

\(A=y^2+16y+63+y^2-2y-14y-2y^2+37\)

\(A=100\)

c. Ta có: x + 2y = 5 ⇒ x = 5 - 2y

Thay vào A ta có:

\(A=\left(5-2y\right)^2+4y^2-2\left(5-2y\right)+10+4\left(5-2y\right).y-4y\)

\(A=25-20y+4y^2+4y^2-19+4y+10+20y-8y^2-4y\)

\(A=16\)

Bài 1: 

a: \(A=\dfrac{x+1+x}{x+1}:\dfrac{3x^2+x^2-1}{x^2-1}\)

\(=\dfrac{2x+1}{x+1}\cdot\dfrac{\left(x+1\right)\left(x-1\right)}{\left(2x+1\right)\left(2x-1\right)}=\dfrac{x-1}{2x-1}\)

b: Thay x=1/3 vào A, ta được:

\(A=\left(\dfrac{1}{3}-1\right):\left(\dfrac{2}{3}-1\right)=\dfrac{-2}{3}:\dfrac{-1}{3}=2\)

10 tháng 7 2018

a ) 

\(A=x\left(x^3+y\right)-x^2\left(x^2-y\right)-x^2\left(y-1\right)\)

\(\Rightarrow A=x^4+xy-x^4+x^2y-x^2y+x^2\)

\(\Rightarrow A=x^2+xy=x\left(x+y\right)\)

Thay \(x=-10;y=5\)vào A , ta được : 

\(A=-10\left(-10+5\right)\)

\(=-10.-5=50\)

Vậy \(A=50\)

10 tháng 7 2018

a) A = x(x3 + y) - x2(x2 - y) - x2(y - 1)

= x4 + xy - x4 + x2y - x2y + x2

= xy + x2

Thay x = –10 và y = 5 vào (1), ta được:

A = -10.5 + (-10)2 = -50 + 100 = 50

Vậy giá trị của biểu thức A tại x = –10 và y = 5 là 50.

b)Ta có: 5x3 – 3x2 + 10x – 6 = (5x3 + 10x )+ ( -3x2– 6)

= 5x(x2 + 2) – 3(x2 + 2) = (x2 + 2)(5x – 3)

Vậy (x2 + 2)(5x – 3) = 0 ⇒ 5x – 3 = 0 (vì x2 + 2 ≥ 0, với mọi x)

⇒x = 3/5

c)Ta có: x2 + y2 – 2x + 4y + 5 = (x2 – 2x + 1) + (y2 + 4y + 4)

= (x – 1)2 + (y + 2)2

Vậy (x – 1)+ (y + 2)2 = 0 ⇒ x – 1 = 0 hay y + 2 = 0

⇒ x = 1 hoặc y = -2

27 tháng 7 2018

\(A=\left(5x-2y\right)\left(5x+2y\right)\)

\(A=\left(5x\right)^2-\left(2y\right)^2\)

\(A=25x^2-4y^2\)

\(A=25.\left(-2\right)^2-4\left(-10\right)^2\)

\(A=25.4-4.100\)

\(A=100-400\)

\(A=300\)

\(B=\left(2x-5\right)\left(4x^2+10x+25\right)\)

\(B=\left(2x\right)^3-5^3\)

\(B=8x^3-125\)

\(B=8.8-125\)

\(B=64-125\)

\(B=-61\)

\(C=\left(3x+2y\right)\left(9x^2-6xy+4y^2\right)\)

\(C=\left(3x\right)^2+\left(2y\right)^2\)

\(C=9x^2+4y^2\)

\(C=9\left(-1\right)^2+4\left(\dfrac{1}{2}\right)^2\)

\(C=9+4.\dfrac{1}{4}\)

\(C=9+1\)

\(C=10\)

20 tháng 12 2018

1. a. \(\left(a+b\right)^2-4\)

\(=\left(a+b+2\right)\left(a+b-2\right)\)

b. \(4a^2+8ab-3a-6b\)

\(=4a\left(a+b\right)-3\left(a+b\right)\)

\(=\left(4a-3\right)\left(a+b\right)\)

c. \(a^2+b^2-c^2-2ab\)

\(=\left(a+b\right)^2-c^2\)

\(=\left(a+b+c\right)\left(a+b-c\right)\)

d. \(5x^2-5xy-3x+3y\)

\(=5x\left(x-y\right)-3\left(x-y\right)\)

\(=\left(5x-3\right)\left(x-y\right)\)

2. a. \(\dfrac{1-x}{x}+\dfrac{x}{1+x}\)

\(=\dfrac{1-x^2}{x\left(1+x\right)}+\dfrac{x^2}{x\left(1+x\right)}\)

\(=\dfrac{1-x^2+x^2}{x\left(1+x\right)}=\dfrac{1}{x\left(1+x\right)}\)

b. \(\dfrac{4}{x+2}+\dfrac{3}{2-x}+\dfrac{12}{x^2-4}\)

\(=\dfrac{4x-8}{\left(x+2\right)\left(x-2\right)}-\dfrac{3x+6}{\left(x+2\right)\left(x-2\right)}+\dfrac{12}{\left(x+2\right)\left(x-2\right)}\)

\(=\dfrac{4x-8-3x-6+12}{\left(x+2\right)\left(x-2\right)}\)

\(=\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}=\dfrac{1}{x+2}\)

3. \(\dfrac{x}{3x+y}-\dfrac{x}{3x-y}-\dfrac{2x^2}{xy^2-9x^3}\)

\(=\dfrac{3x^3-x^2y}{x\left(3x+y\right)\left(3x-y\right)}-\dfrac{3x^3+x^2y}{x\left(3x+y\right)\left(3x-y\right)}-\dfrac{2x^2}{x\left(y-3x\right)\left(y+3x\right)}\)

\(=\dfrac{3x^3-x^2y-3x^3-x^2y+2x^2}{x\left(3x+y\right)\left(3x-y\right)}\)

\(=\dfrac{-x^2y+2x^2}{x\left(3x+y\right)\left(3x-y\right)}\)

\(=\dfrac{-xy+2x}{\left(3x+y\right)\left(3x-y\right)}\)

Thay x = 1 và y = 2 vào phân thức ta được:

\(=-\dfrac{2+2.2}{\left(3+2\right)\left(3-2\right)}=-\dfrac{6}{5}\)

10 tháng 3 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)

\(P=\frac{x^2}{5x+25}+\frac{2x-10}{x}+\frac{50+5x}{x^2+5x}\)\(=\frac{x^2}{5\left(x+5\right)}+\frac{2\left(x-5\right)}{x}+\frac{5\left(x+10\right)}{x\left(x+5\right)}\)

\(=\frac{x^3}{5x\left(x+5\right)}+\frac{10\left(x-5\right)\left(x+5\right)}{5x\left(x+5\right)}+\frac{25\left(x+10\right)}{5x\left(x+5\right)}\)

\(=\frac{x^3+10\left(x-5\right)\left(x+5\right)+25\left(x+10\right)}{5x\left(x+5\right)}=\frac{x^3+10\left(x^2-25\right)+25x+250}{5x\left(x+5\right)}\)

\(=\frac{x^3+10x^2-250+25x+250}{5x\left(x+5\right)}=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}\)\(=\frac{x\left(x^2+10x+25\right)}{5x\left(x+5\right)}\)\(=\frac{\left(x+5\right)^2}{5\left(x+5\right)}=\frac{x+5}{5}\)

b) \(x^2-3x=0\)\(\Leftrightarrow x\left(x-3\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

So sánh với ĐKXĐ, ta thấy \(x=0\)không thoả mãn

Thay \(x=3\)vào biểu thức ta được: \(P=\frac{3+5}{5}=\frac{8}{5}\)

c) Để \(P=-4\)thì \(\frac{x+5}{5}=-4\)\(\Leftrightarrow x+5=-20\)\(\Leftrightarrow x=-25\)( thoả mãn ĐKXĐ )

Vậy \(P=-4\)\(\Leftrightarrow x=-25\)

d) Để \(P\ge0\)thì \(\frac{x+5}{5}\ge0\)\(\Leftrightarrow x+5\ge0\)( vì \(5>0\))\(\Leftrightarrow x\ge-5\)

So sánh với ĐKXĐ, ta thấy x phải thoả mãn \(x>-5\)và \(x\ne0\)

Vậy \(P\ge0\)\(\Leftrightarrow\)\(x>-5\)và \(x\ne0\)

25 tháng 7 2019

#)Giải :

a)\(A=x^2+2xy+y^2-4x-4y+1=\left(x^2+2xy+y^2\right)-4\left(x+y\right)+1=\left(x+y\right)^2-4\left(x+y\right)+1\)

Thay x + y = 3 vào biểu thức, ta được : \(A=3^2-4.3+1=-2\)

25 tháng 7 2019

hãy giải hết giúp mình vs