Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)
\(=\frac{1}{5}-\frac{1}{12}\)
\(=\frac{12}{60}+\frac{-5}{60}\)
\(=\frac{7}{60}\)
b) \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=\frac{2}{3}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\right)\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}\)
\(=\frac{33}{99}-\frac{1}{99}\)
\(=\frac{32}{99}\)
a) \(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{132}=\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{11.12}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-...-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)
\(=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)
b) \(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...-\frac{1}{97}+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
a/ \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}\)
=> \(A=\frac{9}{10}\)
b/ \(A=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=\frac{n-5}{n-5}+\frac{7}{n-5}\)
=> \(A=1+\frac{7}{n-5}\)
Để A nguyên => 7 chia hết cho n-5 => n-5=(-7; -1; 1; 7)
=> n=(-2; 4, 6, 8)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
A = \(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{2014^2}-1\right)\)
A = \(\left(-\frac{1.3}{2.2}\right)\left(-\frac{2.4}{3.3}\right)...\left(-\frac{2013.2015}{2014.2014}\right)\)
A = \(-\left[\frac{\left(1.2....2013\right)\left(3.4....2015\right)}{\left(2.3....2014\right)\left(2.3...2014\right)}\right]\)
A = \(-\left(\frac{2015}{2014.2}\right)\)
A = \(-\frac{2015}{4028}\)
1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9
=1-1/2+1/2-1/3+1/3-1/4+...+1/8-1/9
=1-1/9
=8/9
A) \(x = {7 \over 10}- {8 \over10} \)
\(x = {-1 \over 10}\)
B)\({2 \over3}x = 2{5 \over 6}-{3 \over4}\)
\({2 \over3}x = {25 \over 12}\)
\(x = {25 \over 12}/{2 \over3} \)
\(x = {25\over 8}\)
2/ Tính tổng:
\( = {8 \over 9}\)
Ta có công thức : \(1+2+3+...+n=\frac{n.\left(n+1\right)}{2}\)
\(\Rightarrow B=\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+...+10}\)
\(=\frac{1}{\frac{\left(1+2\right).2}{2}}+\frac{1}{\frac{\left(1+3\right).3}{2}}+...+\frac{1}{\frac{\left(1+10\right)10}{2}}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{10.11}\)
\(=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{11}\right)=2.\frac{9}{22}=\frac{9}{11}\)
Câu a, b phân k ra là ok
\(c)\) \(A=\frac{-1}{20}+\frac{-1}{30}+\frac{-1}{42}+\frac{-1}{56}+\frac{-1}{72}+\frac{-1}{90}\)
\(A=\left(-1\right)\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\)
\(A=\left(-1\right)\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(A=\left(-1\right)\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=\left(-1\right)\left(\frac{1}{4}-\frac{1}{10}\right)\)
\(A=\left(-1\right).\frac{3}{20}\)
\(A=\frac{-3}{20}\)
Vậy \(A=\frac{-3}{20}\)
Chúc bạn học tốt ~
cảm ơn bạn nhiều nha