K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2019

Bài 1 :

\(A=26^2-24^2=\left(26-24\right)\left(26+24\right)=2.50=100\)

\(B=27^2-25^2=\left(27-25\right)\left(27+25\right)=2.52=104\)

Vì \(100< 104\Rightarrow A< B\)

Bài 2 :

\(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x-1\right)\left(x+1\right)=11\)

\(\Rightarrow4\left(x^2+2x+1\right)+4x^2-4x+1-8\left(x^2-1\right)=11\)

\(\Rightarrow4x^2+8x+4+4x^2-4x+1-8x^2+8=11\)

\(\Rightarrow4x=-2\)\(\Leftrightarrow x=-\frac{1}{2}\)

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

30 tháng 9 2018

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

14 tháng 6 2016

a,1/20

b,4/5

14 tháng 6 2016

mình chưa học lớp 8

16 tháng 6 2015

bạn phải tách từng câu ra. chứ kiểu này k ai trả lời cho đâu

10 tháng 4 2016

2)

a)x2-y2=(x+y).(x-y)=(87+13).(87-13)=100.74=7400

b)x3-3x2+3x-1=(x-1)3=(101-1)3=1003=1000000

c)x3+9x2+27x+27=(x+3)3=(97+3)3=1003=1000000

4)

a)x2-6x+10=x2-6x+9+1=(x-3)2+1>=1>0 voi moi x

b)4x-x2-5= -(x2-4x+5)= -(x2-4x+4+1)= -(x-2)2 - 1<0 voi moi x

30 tháng 10 2019

Câu 1 : Tìm x :

1. \(A=x^2+4x-2\)

\(A=x^2+2.x.2+2^2-2^2-2\)

\(A=\left(x^2+4x+2^2\right)-4-2\)

\(A=\left(x+2\right)^2-6\)

\(\left(x+2\right)^2-6\ge-6\)

MIn A= -6 khi \(\left(x+2\right)^2=0\)

=> \(x+2=0hayx=-2\)

Vậy x=2

những câu tiếp theo làm tg tự như thế nhé

30 tháng 10 2019

Câu 1:

a) Ta có: \(A=x^2+4x-2\)

\(=x^2+4x+4-6\)

\(=\left(x+2\right)^2-6\)

Ta có: \(\left(x+2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+2\right)^2-6\ge-6\forall x\)

Dấu '=' xảy ra khi

\(\left(x+2\right)^2=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

Vậy: x=-2

b) Ta có: \(B=2x^2-4x+3\)

\(=2\left(x^2-2x+\frac{3}{2}\right)\)

\(=2\left(x^2-2\cdot x\cdot1+1+\frac{1}{2}\right)\)

\(=2\left[\left(x^2-2x\cdot1+1\right)+\frac{1}{2}\right]\)

\(=2\left[\left(x-1\right)^2+\frac{1}{2}\right]\)

\(=2\left(x-1\right)^2+1\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-1\right)^2+1\ge1\forall x\)

Dấu '=' xảy ra khi

\(2\left(x-1\right)^2=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy: x=1

c) Ta có: \(C=x^2+y^2-4x+2y+5\)

\(=x^2-4x+4+y^2+2y+1\)

\(=\left(x^2-4x+4\right)+\left(y^2+2y+1\right)\)

\(=\left(x-2\right)^2+\left(y+1\right)^2\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\left(y+1\right)^2\ge0\forall y\)

Do đó: \(\left(x-2\right)^2+\left(y+1\right)^2\ge0\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

Vậy: x=2 và y=-1

Câu 2:

a) Ta có: \(A=-x^2+6x+5\)

\(=-\left(x^2-6x-5\right)\)

\(=-\left(x^2-6x+9-14\right)\)

\(=-\left[\left(x^2-6x+9\right)-14\right]\)

\(=-\left[\left(x-3\right)^2-14\right]\)

\(=-\left(x-3\right)^2+14\)

Ta có: \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x-3\right)^2\le0\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2+14\le14\forall x\)

Dấu '=' xảy ra khi

\(-\left(x-3\right)^2=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy: GTLN của đa thức \(A=-x^2+6x+5\) là 14 khi x=3

b) Ta có: \(B=-4x^2-9y^2-4x+6y+3\)

\(=-\left(4x^2+9y^2+4x-6y-3\right)\)

\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)

\(=-\left[\left(4x^2+4x+1\right)+\left(9y^2-6y+1\right)-5\right]\)

\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2-5\right]\)

\(=-\left(2x+1\right)^2-\left(3y-1\right)^2+5\)

Ta có: \(\left(2x+1\right)^2\ge0\forall x\)

\(\Rightarrow-\left(2x+1\right)^2\le0\forall x\)(1)

Ta có: \(\left(3y-1\right)^2\ge0\forall y\)

\(\Rightarrow-\left(3y-1\right)^2\le0\forall y\)(2)

Từ (1) và (2) suy ra

\(-\left(2x+1\right)^2-\left(3y-1\right)^2\le0\forall x,y\)

\(\Rightarrow-\left(2x+1\right)^2-\left(3y-1\right)^2+5\le5\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}-\left(2x+1\right)^2=0\\-\left(3y-1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+1\right)^2=0\\\left(3y-1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\3y-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x=-1\\3y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{-1}{2}\\y=\frac{1}{3}\end{matrix}\right.\)

Vậy: GTLN của đa thức \(B=-4x^2-9y^2-4x+6y+3\) là 5 khi và chỉ khi \(x=\frac{-1}{2}\)\(y=\frac{1}{3}\)

Câu 3:

a) Ta có: \(x^2+y^2-2x+4y+5=0\)

\(\Rightarrow x^2-2x+1+y^2+4y+4=0\)

\(\Rightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Vậy: x=1 và y=-2

b) Ta có: \(5x^2+9y^2-12xy-6x+9=0\)

\(\Rightarrow x^2+4x^2+9y^2-12xy-6x+9=0\)

\(\Rightarrow\left(4x^2+12xy+9y^2\right)+\left(x^2-6x+9\right)=0\)

\(\Rightarrow\left(2x+3y\right)^2+\left(x-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+3y\right)^2=0\\\left(x-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+3y=0\\x-3=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2\cdot3+3y=0\\x=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}6+3y=0\\x=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3y=-6\\x=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=3\end{matrix}\right.\)

Vậy: x=3 và y=-2

13 tháng 7 2019

em 2k6, đọc phần lí thuyết r lm, nên có lỗi j sai mong mn thông cảmvui

13 tháng 7 2019

bài 1,

a, \(3xy\left(4xy^2-5x^2y-4xy\right)\)

= \(3xy.4xy^2-3xy.5x^2y-3xy.4xy\)

=\(12x^2y^3-15x^3y^2-12x^2y^2\)

Bài 1 : Dùng hẳng thức triển khai các tích sau : a ) ( 2x - 3y )*(2x+3y)b ) ( 1+5a)*(1+5a)c ) (2a+3b)*(2a+3b)d) ( a+b+c)*(a+b+c) e ) ( x+y-1)*(x-y-1)Bài 2 : Rút gọn rồi tính giá trị của biểu thức :1. M = ( 2x+y)^2-(2x+y)*(2x-y)*y*(x-y)với x=-2 ; y=32. N = ( a-3b)^2-(a+3b)^2-(a-1)*(b-2) với a=1/2;b=-33. P = (2x-5)*(2x+5)-(2x+1)^2 với x= -2005 4. Q = ( y-3)*(y+3)*(y^2+9)-(y^2+2)*(y^2-2) với y = 2013^2014Bài 3 : Tìm x , biết :a ) ( x-2)^2...
Đọc tiếp

Bài 1 : Dùng hẳng thức triển khai các tích sau : 

a ) ( 2x - 3y )*(2x+3y)

b ) ( 1+5a)*(1+5a)

c ) (2a+3b)*(2a+3b)

d) ( a+b+c)*(a+b+c) 

e ) ( x+y-1)*(x-y-1)

Bài 2 : Rút gọn rồi tính giá trị của biểu thức :

1. M = ( 2x+y)^2-(2x+y)*(2x-y)*y*(x-y)với x=-2 ; y=3

2. N = ( a-3b)^2-(a+3b)^2-(a-1)*(b-2) với a=1/2;b=-3

3. P = (2x-5)*(2x+5)-(2x+1)^2 với x= -2005 

4. Q = ( y-3)*(y+3)*(y^2+9)-(y^2+2)*(y^2-2) với y = 2013^2014

Bài 3 : Tìm x , biết :

a ) ( x-2)^2 -(x+3)^2-4*(x+1)=5

b) ( 2x-3)*(2x+3)-(x-1)^2-3x*(x-5)=-44

c ) (5x+1)^2-(5x+3)*(5x+3)=30

d) ( x+3 )^2+(x-2)*(x+2)-2*(x-1)^2=7

Bài 4 : So sánh :

a ) A = 2005*2007 và B = 2006^2

b ) (2+1)*(2^2+1)*(2^4+1)*(2^8+1) và D = 2^32

c ) ( 3+1)*(3^2+1)*(3^4+1)*(3^16+1)=3^32-1

Bài 5 : Tính nhanh : 

1 ) 127^2+146*127+73^2

2) 9^8*2^8-(18^4+1)

3) 100^2 -99^3 +98^2-97^2+....+2^2-1^2

4 ) 180^2-220^2/125^2+150*125+75^2

5 ) ( 20^2 +18^2+16^2+....+4^2+2^2 ) -( 19^2+17^2+...+3^2+1^2 ) 

_____________________________________________________________________________

BÀI TẬP BỔ SUNG 

Bài 1 : CM các BT sau có giá trị không âm 

A = x^2-4x+9

B= 4x^2+4x+2007 

C= 9-6x+x^2

D= 1-x+x^2

Bài 2 : 

a . Cho a>b>0 ; 3a^2+3b^2 = 10ab . Tính P=a-b/a+b

b. Cho a>b>0 ; 2a^2+2b^2=5ab .Tính E= a+b/a-b 

Bài 3 : Cho biểu thức : A = ( x-2)^2-(x+5)*(x-5) 

a ) Rút gọn A 

b) Tìm x để A = 1 

c ) Tính giá trị của biểu thức A tại -3/4

Bài 6 :

a ) Tính nhanh : 2006^2-36

b ) CMR biểu thức sau có giá trị không âm :

1 . B= x^2-x+1 

2. C = 2x^2 +y^2-2xy-10x+27

6
4 tháng 8 2016

ngất

4 tháng 8 2016

choán