K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2017

=> 9S=9+9^2+9^3+...+9^2018

=> 9S-S=8S=(9+9^2+9^3+...+9^2018)-(1+9+9^2+9^3+...+9^2017)

=> 8S=9+9^2+...+9^2018-1-9-9^2-...-9^2017

=> 8S=9^2018-1

=> S=(9^2018-1)/8

22 tháng 10 2017

\(S=1+9+9^2+...+9^{2017}.\)

\(S=\left(1+9\right)+\left(9^2+9^3\right)+....+\left(9^{2016}+9^{2017}\right)\)

\(S=10+10.9^2+...+10.9^{2016}\)

\(S=1.\left(1+9^2+....+9^{2016}\right)⋮10\)

\(\Rightarrow S⋮10\)

22 tháng 10 2017

sorry . mình viết thiếu số 0 .

8 tháng 4 2018

Ta có \(\frac{1}{9S}=\frac{9^{2017}+\frac{1}{9}}{9^{2017}+1}\)=   \(\frac{9^{2017}+1-\frac{8}{9}}{9^{2017}+1}=1-\frac{\frac{8}{9}}{9^{2017}+1}\)

           \(\frac{1}{9M}=\frac{9^{2016}+\frac{1}{9}}{9^{2016}+1}\)=    \(\frac{9^{2016}+1-\frac{8}{9}}{9^{2016}+1}=1-\frac{\frac{8}{9}}{9^{2016}+1}\)

Vì \(9^{2016}+1< 9^{2017}+1\)=> \(\frac{\frac{8}{9}}{9^{2016}+1}>\frac{\frac{8}{9}}{9^{2017}+1}\)

=> \(1-\frac{\frac{8}{9}}{9^{2016}+1}< 1-\frac{\frac{8}{9}}{9^{2017}+1}\)=>  \(\frac{1}{9}S< \frac{1}{9}M\Rightarrow S< M\)

16 tháng 5 2018

   \(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\)

=>\(2S=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\)

=>\(2S-S=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\right)\)

=>\(S=1-\frac{1}{2^9}=\frac{511}{512}\)

Vậy \(S=\frac{511}{512}\)

Ta có : \(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+......+\frac{1}{2^9}\)

\(\Rightarrow2S=1+\frac{1}{2}+\frac{1}{2^3}+....+\frac{1}{2^8}\)

\(\Rightarrow2S-S=1-\frac{1}{2^9}\)

\(\Leftrightarrow S=1-\frac{1}{2^9}\)

30 tháng 11 2015

S=(-10)+...+(-1)=(-10)+[(-9)+(-1)]+...+[(-6)+(-4)]+(-5)=-10+(-10)+(-10)+(-10)+(-10)+(-5)=-10*5+(-5)=-50+(-5)=-55

26 tháng 2 2020

S = (1/2 + 3/2 + 5/2 + ... + 19/2) + (1+2+3+...+9)

= A + 45

A = \(\frac{1+3+5+...+19}{2}\)

Tử số có số số hạng là: (19-1)/2 + 1 = 10 số

=> A = \(\frac{\left(19+1\right)x10:2}{2}=20x5:2=50\)

=> S = 50 + 45 = 95

26 tháng 2 2020

S= (1+2+3+4+...+9) . \(\left(\frac{1}{2}+\frac{3}{2}+\frac{5}{2}+...+\frac{19}{2}\right)\)

S=(1+9).9:2.\(\frac{1+3+5+7+...+19}{2}\)

S=45.\(\frac{\left[\left(19-1\right):2+1\right].\left(19+1\right):2}{2}\)

S=45.50=2250

5 tháng 1 2016

S = (1 - 2 - 3 + 4) + (5 - 6 - 7 + 8) + (9 - 10 - 11 + 12) + (13 - 14 - 15 + 16) + (17 - 18)

= 0 + 0 + 0 + 0 + (-1)

= -1

A = (1 - 2 - 3 + 4) + (5 - 6 - 7 + 8) + ... + (2013 - 2014 - 2015 + 2016) + 2017

= 0 + 0 + ... + 0 + 2017

= 2017

5 tháng 1 2016

S = (1 - 2 - 3 + 4) + (5 - 6 - 7 + 8) +...... + (13 - 14 - 15 + 16)+ 17 - 18

S = 17 - 18 = -2

A = (1 - 2 - 3 + 4) + (5 - 6 -7 + 8) + ..... + (2013 - 2014 - 2015 + 2016)  + 2017

A = 2017