K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2015

bai 1:

=>3S + 1.2.3+2.3.3+...+99.100.3

=>1.2.3+2.3(4-1)+3.4(5-2)+...+99.100(101-98)

=>1.2.3+2.3.4-1.2.3+3.4.5+-2.3.4+...+99.100.101-98.100.101

=>99.100.101=999900

=>S=333300

21 tháng 2 2016

1*2=1/3*(1*2*3-0*1*2)

2*3=1/3(2*3*4-1*2*3)

3*4=1/3(3*4*5-2*3*4)

...

99*100=1/3(99*100*101-98*99*100)

ta đi triệt tiêu, ta thấy trong ngoặc phép tính trên ở trong ngoặc có biểu thức đầu bị biểu thức sau của phép tính dưới triệt tiêu đi nên:

B=99*100*101/3

17 tháng 11 2019

Ta có : S = 1 - 3 + 3- 3+ 3- 3+...+ 398 - 399 

      => 3S = 3 - 32 + 3- 3+ 3- 3+...+ 399 - 3100 

Lấy 3S + S = (3 - 32 + 3- 3+ 3- 3+...+ 399 - 3100 ) + ( 1 - 3 + 3- 3+ 3- 3+...+ 398 - 399 )

          4S    = 3100 + 1

=> \(S=\frac{3^{100}+1}{4}\Leftrightarrow3^{100}+1⋮4\) (vì sở dĩ tổng S là số nguyên) 

=> 3100 : 4 dư 1 

12 tháng 1 2019

ko biết

6 tháng 2 2016

a ) S = 4 + 42 + 43 + 44 + ..... + 499 + 4100

S = ( 4 + 42 ) + ( 43 + 44 ) + .... + ( 497 + 498 ) + ( 499 + 4100 )

⇒ S = 4.( 1 + 4 ) + 43.( 1 + 4 ) + ...... + 497.( 1 + 4 ) + 499.( 1 + 4 )

⇒ S = 4.5 + 43.5 + ..... + 497.5 + 499.5

⇒ S = 5.( 4 + 43 + ..... + 497 + 499 )

Vì 5 ⋮ ⋮ 5 ( đpcm )

Câu b tương tự .

 

6 tháng 2 2016

Làm theo công thức nhé!!

9 tháng 2 2019

1) 

a)Ta có:

S=1+2+22+.....+299

S=(1+2)+(22+23)+...+(298+299)

S=3+2(1+2)+...+298(1+2)

S=3+2.3+...+298.3

S=3(1+2+...+298)\(⋮\)3

Vậy S\(⋮\)3

b)Ta có:

S=1+2+22+.....+299

2S=2+22+23+...+2100

2S-S=(2+22+23+...+2100)-(1+2+22+.....+299)

S=2+22+23+...+2100-1-2-22-.....-299

S=2100-1

S+1=2100-1+1

S+1=2100

S+1=(22)50

S+1=450=4n+2

=>n+2=50

=>n=48

Vậy n=48

19 tháng 10 2015

Câu hỏi tương tự có đấy

12 tháng 8 2018

a) Đặt biểu thức trên là A, ta có:

A = 21 + 22 + 23 + 24 + ... + 299 + 2100

=> A = (21 + 22) + (23 + 24) + ... + (299 + 2100)

=> A = 21.(1 + 2) + 23.(1 + 2) + ... + 299.(1 + 2)

=> A = 21.3 + 23.3 + ... + 299.3

=> A = 3(21 + 23 + ... + 299)

=> A ⋮ 3

\(26=13.2\)

\(s=3.\left(1+3+9\right)+3^4.\left(1+3+9\right)+....+3^{2012}.\left(1+3+9\right)\)

\(s=3.13+3^413+.....+3^{2012}.13\)

\(s=13.\left(3+3^4+....+3^{2012}\right)\)

\(\Rightarrow s=3.\left(1+3\right)+3^3.\left(1+3\right)+.......+3^{2015}.\left(1+3\right)\)

\(s=3.4+3^3.4+....+3^{2015}.4\)

\(s=4.\left(3+3^3+.....+3^{2015}\right)\)

\(\Rightarrow4⋮2\Rightarrow4.\left(3+3^3+....+3^{2015}\right)⋮2\)

\(\Rightarrow s⋮2\Leftrightarrow s⋮13\)

\(\Rightarrow s⋮\orbr{\begin{cases}13\\2\end{cases}}\Leftrightarrow s⋮26\)