K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2017

a,5mũ 36=(5mũ3)mũ12=125 mũ12

11^24=(11^2)12=121^12

vì 121<125 nên 5^36>11^24

14 tháng 11 2017

cảm ơn nha

28 tháng 7 2019

\(a=2^1+2^2+2^3+...+2^{100}\)

\(2a=2^2+2^3+2^4+...+2^{101}\)

\(2a-a=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)

\(a=2^{101}-2\)

\(a+2=2^{101}-2+2=2^{201}\)

\(\Rightarrow x=101\)

28 tháng 7 2019

\(a=2^1+2^2+2^3+...+2^{100}\)

\(2a=2^2+2^3+2^4+...+2^{99}+2^{100}\)

\(2a-a=\left(2^2+2^3+2^4+...+2^{99}+2^{100}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)

\(a=2^{99}-2\)

\(a+2=2^{99}-2+2=2^{99}\)

\(\Rightarrow x=99\)

15 tháng 7 2019

So sánh : và \(72^{44}-72^{43}\)

Ta có :

       \(72^{45}-72^{44}=72^{44}\left(72-1\right)\)

       \(72^{44}-72^{43}=72^{43}\left(72-1\right)\)

Vì 7244 > 7243 => 7244 (72-1)  > 7243 (72-1)

                    hay 7245 -7244 > 7244 - 7243 

            

          

15 tháng 7 2019

Nhanh hộ mọi người😦😦😦😦😦😨

8 tháng 12 2019

\(a.x-143=57\)

\(x=200\)

\(b.\left(8x-12\right):4=3^3\)

\(8x-12=27.4\)

\(8x-12=108\)

\(8x=120\)

\(x=15\)

8 tháng 12 2019

\(d.10+2x=4^2\)

\(2x=16-10\)

\(2x=6\)

\(x=3\)

13 tháng 9 2017

a)4^50=(2^2)^50=2^100

Vậy 2^100=4^50

b) 4^3x5^3=(4x5)^3=20^3

Vì 20^3>19^3 nên 4^3x5^3>19^3

Tìm x:

3^2x4^2:(x-2)=12

(3x4)^2:(x-2)=12

12^2:(x-2)-12

x-2=12^2:12

x-2=12

x=12+2

x=14 

13 tháng 9 2017

a, 2100 và 450

Ta có : 

450=(22)50=2100

Vì 2100 = 2100

=> 450 = 2100

14 tháng 9 2020

A = 3 + 32 + 33 + ... + 3100

⇔ 3A = 3( 3 + 32 + 33 + ... + 3100 )

⇔ 3A = 32 + 33 + ... + 3101

⇔ 2A = 3A - A

          = 32 + 33 + ... + 3101 - ( 3 + 32 + 33 + ... + 3100 )

          = 32 + 33 + ... + 3101 - 3 - 32 - 33 - ... - 3100

          = 3101 - 3

2A + 3 = 3x+100

⇔ 3101 - 3 + 3 = 3x+100

⇔ 3101 = 3x+100

⇔ 101 = x + 100

⇔ x = 1

Vậy x = 1

14 tháng 9 2020

                                                        Bài giải

\(A=3+3^2+3^3+...+3^{100}\)

\(3A=3^2+3^3+3^4+...+3^{101}\)

\(3A-A=2A=3^{101}-3\)

Ta có : \(2A+3=3^{x+100}\)

\(3^{101}-3+3=3^{x+100}\)

\(3^{101}=3^{x+100}\)

\(\Rightarrow\text{ }x+100=101\)

\(\Rightarrow\text{ }x=1\)