Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a) Ta có: \(\left(3n-1\right)^2-4\)
\(=\left(3n-1-2\right)\left(3n-1+2\right)\)
\(=\left(3n-3\right)\left(3n+1\right)\)
\(=3\cdot\left(n-1\right)\cdot\left(3n+1\right)⋮3\forall n\in N\)(đpcm)
b) Ta có: \(100-\left(7n+3\right)^2\)
\(=\left[10-\left(7n+3\right)\right]\left[10+\left(7n+3\right)\right]\)
\(=\left(10-7n-3\right)\left(10+7n+3\right)\)
\(=\left(7-7n\right)\left(13+7n\right)\)
\(=7\cdot\left(1-n\right)\cdot\left(13+7n\right)⋮7\forall n\in N\)(đpcm)
c) Ta có: \(\left(3n+1\right)^2-25\)
\(=\left(3n+1-5\right)\left(3n+1+5\right)\)
\(=\left(3n-4\right)\left(3n+6\right)\)
\(=3\cdot\left(3n-4\right)\cdot\left(n+2\right)⋮3\forall n\in N\)(đpcm)
d) Ta có: \(\left(4n+1\right)^2-9\)
\(=\left(4n+1-3\right)\left(4n+1+3\right)\)
\(=\left(4n-2\right)\left(4n+4\right)\)
\(=2\cdot\left(2n-1\right)\cdot4\cdot\left(n+1\right)\)
\(=8\cdot\left(2n-1\right)\cdot\left(n+1\right)⋮8\forall n\in N\)(đpcm)
Bài 1:
Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n^3+2n^2-2n^3-2n^2+6n\)
\(=6n⋮6\)
1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)
2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)
Ta có bđt:\(a^2-b^2=\left(a+b\right)\cdot\left(a-b\right)\)
Áp dụng ta có: Đề bài sẽ bằng:0 \(\left(4n+3-5\right)\cdot\left(4n+3+5\right)\)\(=\left(4n-2\right)\left(4n+8\right)⋮8\)vì\(4n-2⋮2,4n+8⋮4\)
(4n+3)^2-25
=(4n+3)^2-5^2
=(4n+3+5)(4n+3-5)
=(4n+8)(4n-8)
=[4(n+2)][2(n-4)]
=8(2+n)(n-4)luôn chia hết cho 8
Vậy...
+ Do n không chia hết cho 3 => 4n không chia hết cho 3; 3 chia hết cho 3 => 4n + 3 không chia hết cho 3 => (4n + 3)2 không chia hết cho 3
=> (4n + 3)2 chia 3 dư 1 (1)
+ Do 4n + 3 lẻ => (4n + 3)2 lẻ => (4n + 3)2 chia 8 dư 1 (2)
Từ (1) và (2); do (3;8)=1 => (4n + 3)2 chia 24 dư 1
Mà 25 chia 24 dư 1
=> (4n + 3)2 - 25 chia hết cho 24 ( đpcm)
B=n(n4-4n2+4)-n3 = n5-4n3+4n-n3=n5-5n3+4n=n(n4-5n2+4)=n(n4-n2-4n2+4)=n[n2(n2-1)-4(n2-1)]=n(n2-1)(n2-4)=n(n-1)(n-2)(n+1)(n+2)
=> B=(n-2)(n-1).n(n+1)(n+2)
Nhận thấy, các số (n-2); (n-1); n; (n+1) và (n+2) là 5 số tự nhiên liên tiếp nên ít nhất phải có 2 số là số chẵn và 1 số phải có tận cùng là 5 hoặc 0
=> Số tận cùng của B là 0
=> B chia hết cho 10 với mọi n thuộc Z
1 bài toán con nít hình như em này mới học lớp 8 mà nhỉ anh chắc chắc 100% lớp 8 nâng cao
\(4n^2\left(n+2\right)+4n\left(n+2\right)=\left(n+2\right)\left(4n^2+4n\right)=4n\left(n+1\right)\left(n+2\right)\)
Đặt \(A=n\left(n+1\right)\left(n+2\right)\) ta có
+ Nếu n chẵn => A chia hết cho 2
+ Nếu n lẻ thì n+1 chia hết cho 2 => A chia hết cho 2
=> A chia hết cho 2 với mọi n
+ Nếu n chia hết cho 3 => A chia hết cho 3
+ Nếu n chia 3 dư 1 thì n+2 chia hết cho 3 => A chia hết cho 3
+ Nếu n chia 3 dư 2 thì n+1 chia hết cho 3 => A chia hết cho 3
=> A chia hết cho 3 với mọi n
=> A đồng thời chia hết cho cả 2 và 3 với mọi n => A chia hết cho 6 với mọi n => A có thể biểu diễn thành A=6.k
=> 4A=4.6.k=24.k chia hết cho 24 (dpcm)
4n2(n+2)+4n(n+2)
=4n(n+2)(n+1)
Ta có: 24=2.3.4 và ƯCLN(2,3,4)=1 nên ta chứng minh 4n(n+2)(n+1) chia hết cho 2,3 và 4
n chia cho 2 sẽ có 2 dạng là 2k và 2k+1 (k\(\in\)Z)
+) Với n = 2k thì \(n⋮2\)=> 4n(n+1)(n+2)\(⋮2\)(1)
+) Với n = 2k+1 thì n+1=2k+2
Vì 2k+2\(⋮2\)nên 4n(n+1)(n+2)\(⋮2\)(2)
Từ (1) và (2) => 4n(n+1)(n+2)\(⋮\)2 với mọi n\(\in Z\)
n chia cho 3 có 3 dạng là: 3m+1, 3m+2 và 3m
+) Với n = 3m thì n\(⋮\)3 => 4n(n+1)(n+2)\(⋮\)3 (3)
+) với n = 3m+1 thì n+2=3m+1+2=3m+3
Vì 3m+3\(⋮3\) nên 4n(n+1)(n+2)\(⋮3\)(4)
+) Với n = 3m+2 thì n+1=3m+2+1=3m+3
Vì 3m+3\(⋮3\)nên 4n(n+1)(n+2)\(⋮3\)(5)
Từ (3)(4)(5) => 4n(n+1)(n+2)\(⋮3\)với mọi \(n\in Z\)
Vì 4\(⋮\)4 nên 4n(n+1)(n+2)\(⋮4\)
Ta có: 4n(n+1)(n+2) chia hết cho 2,3,4
=> 4n(n+1)(n+2) \(⋮24\)với mọi \(n\in Z\)
Vậy 4n2(n+2)+4n(n+2)\(⋮24\)với mọi\(n\in Z\)
Câu hỏi của Lưu Thanh Vy - Toán lớp 8 - Học toán với OnlineMath
Em tham khaoe link trên.