K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét tử riêng
72 + 36 x 2 + 24 x 3 + 18 x 4 + 12 x 6 + 144
= 72 + 72 + 72 + 72 + 72 + 144
= 72 x 5 + 144
= 360 + 144
= 504
Xét mẫu riêng
9,8 + 8,7 + 7,6 + ... + 3,2 + 2,1 ‐ 2,3 ‐ 3,4 ‐ ....‐7,8 ‐ 8,9
=9,8 + 8,7 + 7,6 + 6,5 + 5,4 + 4,3 + 3,2 + 2,1 ‐ 1,2 ‐ 2,3 ‐ 3,4 ‐ 4,5 ‐ 5,6 ‐ 6,7 ‐ 7,8 ‐ 8,9
=﴾ 9,8 ‐ 8,9 ﴿ + ﴾ 8,7 ‐ 7,8 ﴿ + ﴾ 7,6 ‐ 6,7 ﴿ + ﴾ 6,5 ‐ 5,6 ﴿ + ﴾ 5,4 ‐ 4,5 ﴿ + ﴾ 4,3 ‐ 3,4 ﴿ + ﴾ 3,2 ‐ 2,3﴿ + ﴾ 2,1 ‐ 1,2 ﴿
= 0,9 + 0,9 + 0,9 + 0,9 + 0,9 + 0,9 + 0,9 + 0,9
= 0,9 x 8
= 7,2
Vậy A =504/7,2=70

NHỚ TK MK NHA

31 tháng 12 2018

Xét tử riêng
72 + 36 x 2 + 24 x 3 + 18 x 4 + 12 x 6 + 144
= 72 + 72 + 72 + 72 + 72 + 144
= 72 x 5 + 144
= 360 + 144
= 504
Xét mẫu riêng
9,8 + 8,7 + 7,6 + ... + 3,2 + 2,1 ‐ 2,3 ‐ 3,4 ‐ ....‐7,8 ‐ 8,9
=9,8 + 8,7 + 7,6 + 6,5 + 5,4 + 4,3 + 3,2 + 2,1 ‐ 1,2 ‐ 2,3 ‐ 3,4 ‐ 4,5 ‐ 5,6 ‐ 6,7 ‐ 7,8 ‐ 8,9
=﴾ 9,8 ‐ 8,9 ﴿ + ﴾ 8,7 ‐ 7,8 ﴿ + ﴾ 7,6 ‐ 6,7 ﴿ + ﴾ 6,5 ‐ 5,6 ﴿ + ﴾ 5,4 ‐ 4,5 ﴿ + ﴾ 4,3 ‐ 3,4 ﴿ + ﴾ 3,2 ‐ 2,3﴿ + ﴾ 2,1 ‐ 1,2 ﴿
= 0,9 + 0,9 + 0,9 + 0,9 + 0,9 + 0,9 + 0,9 + 0,9
= 0,9 x 8
= 7,2
Vậy A =504/7,2=70
 

Xét tử riêng
72 + 36 x 2 + 24 x 3 + 18 x 4 + 12 x 6 + 144
= 72 + 72 + 72 + 72 + 72 + 144
= 72 x 5 + 144
= 360 + 144
= 504
Xét mẫu riêng
9,8 + 8,7 + 7,6 + ... + 3,2 + 2,1 ‐ 2,3 ‐ 3,4 ‐ ....‐7,8 ‐ 8,9
=9,8 + 8,7 + 7,6 + 6,5 + 5,4 + 4,3 + 3,2 + 2,1 ‐ 1,2 ‐ 2,3 ‐ 3,4 ‐ 4,5 ‐ 5,6 ‐ 6,7 ‐ 7,8 ‐ 8,9
=﴾ 9,8 ‐ 8,9 ﴿ + ﴾ 8,7 ‐ 7,8 ﴿ + ﴾ 7,6 ‐ 6,7 ﴿ + ﴾ 6,5 ‐ 5,6 ﴿ + ﴾ 5,4 ‐ 4,5 ﴿ + ﴾ 4,3 ‐ 3,4 ﴿ + ﴾ 3,2 ‐ 2,3﴿ + ﴾ 2,1 ‐ 1,2 ﴿
= 0,9 + 0,9 + 0,9 + 0,9 + 0,9 + 0,9 + 0,9 + 0,9
= 0,9 x 8
= 7,2
Vậy A =504/7,2=70
NHỚ TK MK NHA

8 tháng 8 2017

cậu làm dùm mình bài 7,8 được ko

10 tháng 5 2018

\(\text{Câu 1 :}\)

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{12.13}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{12}-\frac{1}{13}\)

\(=\frac{1}{1}-\frac{1}{13}\)

\(=\frac{12}{13}\)

\(\text{Câu 2 :}\)

\(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)

\(=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{101}\right)\)

\(=\frac{5}{2}.\frac{100}{101}\)

\(=\frac{250}{101}\)

\(9,8+8,7+7,6+...+2,1-1,2-2,3-...-8,9\)\(8,9\)

Ta thấy dãy số trên có 16 số nên ta chia 8 cặp số như sau :

\(=\left(9,8-8,9\right)+\left(8,7-7,8\right)+...+\left(2,1-1,2\right)\)

\(=0,9+0,9+0,9+...+0,9\)

\(=0,9\times8\)

\(=7,2\)

k nha!

26 tháng 5 2018

Gọi dãy trên là A

A = 9,8 + 8,7 + 7,6 + ...+ 2,1 - 1,2 - 2,3 - 3,4 - ....... - 8,9

A = ( 9,8 + 8,7 + 7,6 + ... + 2,1 ) - ( 1,2 + 2,3 + 3,4 + ... + 8,9 )

+) SSH của vế thứ nhất là : ( 9,8 - 2,1 ) : 1,1 + 1 = 8 ( số )

     Tổng là : ( 9,8 + 2,1 ) . 8 : 2 = 47,6

+) SSH của vế thứ hai là : ( 8,9 - 1,2 ) : 1,1 + 1 = 8 ( số )

     Tổng là : ( 8,9 + 1,2 ) . 8 : 2 = 40,4

=> A = 47,6 - 40,4 = 7,2

Vậy, A = 7,2

# Mik làm ý A trước nhé, mik sợ dài :

- Với n = 1 \(\Rightarrow1=\frac{1.2.3}{6}\)( đúng )

- Giả sử đẳng thức cũng đúng với\(n=k\)hay :

\(1^2+2^2+3^2+...+k^2=\)\(\frac{k\left(k+1\right)\left(2k+1\right)}{6}\)

Ta cần chứng minh nó cũng đúng với\(n=k+1\)hay :

\(1^2+2^2+3^2+...+k^2+\left(k+1\right)^2=\)\(\frac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{6}\)

Thật vậy, ta có:

\(1^2+2^2+3^2+...+k^2+\left(k+1\right)^2=\)\(\frac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)

\(\Rightarrow\left(k+1\right)\left(\frac{k\left(2k+1\right)}{6}+k+1\right)=\)\(\left(k+1\right)\left(\frac{2k^2+k+6k+6}{6}\right)\)

\(\Rightarrow\)\(\left(k+1\right)\left(\frac{2k^2+7k+6}{6}\right)=\)\(\frac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)( đpcm )

# giờ mik làm ý B nha !

- Với n = 1 \(\Rightarrow\)1 = 1 ( đúng )

Giả sử bài toán đúng với\(n=k\left(n\inℕ^∗\right)\)thì ta có :

1 + 23 + 33 + .... + k3 = \(\left[\frac{n\left(n+1\right)}{2}\right]^2\left(1\right)\)

Ta cần chứng minh đề bài đúng với\(n=k+1\)tức là :

13 + 23 + 33 + ...... + n3 = \(\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\left(2\right)\)

Đặt \(B=1^3+2^3+...+\left(k+1\right)^3\)

\(=\left(\frac{k\left(k+1\right)}{2}\right)^2+\left(k+1\right)^3\)theo ( 1 )

\(=\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)theo ( 2 )

\(\Rightarrow\left(1\right),\left(2\right)\)đều đúng

Mà \(\left[\frac{n\left(n+1\right)}{2}\right]^2=\)\(\frac{n^2\left(n+1\right)^2}{4}\)

\(\Rightarrow\)\(1^3+2^3+...+n^3=\)\(\frac{n^2\left(n+1\right)^2}{4}\)( đpcm )

 
21 tháng 3 2018

\(A=\frac{1}{2}:\frac{4}{3}:\frac{-5}{4}:\frac{6}{5}:...:\frac{-101}{100}\) 

<=> \(A=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{-4}{5}\cdot\frac{5}{6}\cdot...\cdot\frac{-100}{101}\)

Trong biểu thức  A có số số âm là (100-4):2 + 1 =49 số

Vậy A là số âm => \(A=-\left(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot...\cdot\frac{100}{101}\right)\)

=> \(A=-\left(\frac{1}{2}\cdot\frac{3}{101}\right)=\frac{-3}{202}\)

21 tháng 3 2018

thanks bn nhiều nha Hiếu