\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}}{\frac{2015}{1}+\frac{20...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2017

k minh minh giai cho

26 tháng 1 2017

tran linh linh bạn giải đi đã

28 tháng 1 2017

a) Ta có: A= \(\frac{4}{7.31}+\frac{6}{7.41}+\frac{9}{10.41}+\frac{7}{10.57}\)

\(\Rightarrow\)\(\frac{1}{5}A=\frac{4}{31.35}+\frac{6}{35.41}+\frac{9}{41.50}+\frac{7}{50.57}\)

\(\Rightarrow\frac{1}{5}A=\frac{1}{31}-\frac{1}{35}+\frac{1}{35}-\frac{1}{41}+\frac{1}{41}-\frac{1}{50}+\frac{1}{50}-\frac{1}{57}\)

\(\Rightarrow\frac{1}{5}A=\frac{1}{31}-\frac{1}{57}\)

Ta có: \(B=\frac{7}{19.31}+\frac{5}{19.43}+\frac{3}{23.43}+\frac{11}{23.57}\)

\(\Rightarrow\frac{1}{2}B=\frac{7}{31.38}+\frac{5}{38.43}+\frac{3}{43.46}+\frac{11}{46.57}\)

\(\Rightarrow\frac{1}{2}B=\frac{1}{31}-\frac{1}{38}+\frac{1}{38}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}+\frac{1}{46}-\frac{1}{57}\)

\(\frac{1}{2}B=\frac{1}{31}-\frac{1}{57}\)

Do đó: \(\frac{1}{2}B=\frac{1}{5}A\Rightarrow\frac{A}{B}=\frac{5}{2}\)

b) Ta có: \(B=\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{1}{2016}\)

\(\Rightarrow B=\left(1+\frac{2015}{2}\right)+\left(1+\frac{2014}{3}\right)+...+\left(1+\frac{1}{2016}\right)+1\)

\(\Rightarrow B=\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2016}+\frac{2017}{2017}=2017\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}\right)\)

\(\Rightarrow\frac{A}{B}=\frac{1}{2017}\)

7 tháng 5 2018

Bài 1 : 

Ta có :

\(A=\frac{10^{17}+1}{10^{18}+1}=\frac{\left(10^{17}+1\right).10}{\left(10^{18}+1\right).10}=\frac{10^{18}+10}{10^{19}+10}\)

Mà : \(\frac{10^{18}+10}{10^{19}+10}>\frac{10^{18}+1}{10^{19}+1}\)

Mà \(A=\frac{10^{18}+10}{10^{19}+10}\)nên \(A>B\)

Vậy \(A>B\)

Bài 2 :

Ta có :

\(S=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2013}\)

\(\Rightarrow S=\frac{2014-1}{2014}+\frac{2015-1}{2015}+\frac{2016-1}{2016}+\frac{2013+3}{2013}\)

\(\Rightarrow S=1-\frac{1}{2014}+1-\frac{1}{2015}+1-\frac{1}{2016}+1+\frac{3}{2013}\)

\(\Rightarrow S=4+\frac{3}{2013}-\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)\)

Vì \(\frac{1}{2013}>\frac{1}{2014}>\frac{1}{2015}>\frac{1}{2016}\)nên  \(\frac{3}{2013}-\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)>0\)

Nên : \(M>4\)

Vậy \(M>4\)

Bài 3 : 

Ta có :

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.......+\frac{1}{100^2}\)

Suy ra : \(A< \frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+....+\frac{1}{99.101}\)

\(\Rightarrow A< \frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{2.4}+......+\frac{2}{99.101}\right)\)

\(\Rightarrow A< \frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-......-\frac{1}{101}\right)\)

\(\Rightarrow A< \frac{1}{2}.\left[\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{99}\right)-\left(\frac{1}{3}+\frac{1}{4}+......+\frac{1}{101}\right)\right]\)

\(\Rightarrow A< \frac{1}{2}.\left(1+\frac{1}{2}-\frac{1}{100}-\frac{1}{101}\right)\)

\(\Rightarrow A< \frac{1}{2}.\left(1+\frac{1}{2}\right)\)

\(\Rightarrow A< \frac{3}{4}\)

Vậy \(A< \frac{3}{4}\)

Bài 4 :

\(a)A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2015.2017}\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{1}{2015.2017}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{2015}-\frac{1}{2017}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(1-\frac{1}{2017}\right)\)

\(\Rightarrow A=\frac{1}{2}.\frac{2016}{2017}\)

\(\Rightarrow A=\frac{1008}{2017}\)

Vậy \(A=\frac{1008}{2017}\)

\(b)\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+......+\frac{1}{x\left(x+2\right)}=\frac{1008}{2017}\)

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{x.\left(x+2\right)}=\frac{2016}{2017}\)

\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{x}-\frac{1}{x+2}=\frac{2016}{2017}\)

\(1-\frac{1}{x+2}=\frac{2016}{2017}\)

\(\Rightarrow\frac{1}{x+2}=1-\frac{2016}{2017}\)

\(\Rightarrow\frac{1}{x+2}=\frac{1}{2017}\)

\(\Rightarrow x+2=2017\)

\(\Rightarrow x=2017-2=2015\)

Vậy \(x=2015\)

14 tháng 5 2016

Đặt \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2015}-\frac{1}{2016}\)

\(A=\left(1+\frac{1}{3}+\frac{1}{5}+.....+\frac{1}{2015}\right)-\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2016}\right)\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}+\frac{1}{2016}\right)-2\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2016}\right)\)

\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2015}+\frac{1}{2016}-\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{1008}\right)\)

\(A=\frac{1}{1009}+\frac{1}{1010}+.....+\frac{1}{2016}\)

Khi đó  \(\frac{\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2015}-\frac{1}{2016}\right)}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=\frac{A}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=\frac{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=1\)
 

14 tháng 5 2016

Bạn xem lời giải của mình nhé:

Giải:

Bài 2:

Ta xét A = \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)

\(=1+\left(\frac{1}{2}-1\right)+\frac{1}{3}+\left(\frac{1}{4}-\frac{2}{4}\right)+...+\frac{1}{2015}+\left(\frac{1}{2016}-\frac{2}{2016}\right)\\ =1+\frac{1}{2}-1+\frac{1}{3}+\frac{1}{4}-\frac{1}{2}+...+\frac{1}{2015}+\frac{1}{2016}-\frac{1}{1008}\)

\(=\left(1-1\right)+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{1008}-\frac{1}{1008}\right)+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\)

\(=\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\)

 \(\Rightarrow\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right):\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right)\\ =\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right):\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right)\\ =1\)

Chúc bạn học tốt!hihi

5 tháng 5 2016

Ta có: \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}>\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}\)(Tự chứng minh)

Nên \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}+\frac{1}{2015}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}+\frac{1}{2015}\)

Gọi \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}+\frac{1}{2015}\)

Ta có: \(A=\frac{1}{1}-\frac{1}{2015}+\frac{1}{2015}=1\)

Do đó \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}+\frac{1}{2015}<1\)

22 tháng 3 2018

\(A=\left(\frac{1}{2016}+1\right)+\left(\frac{2}{2015}+1\right)+...+\left(\frac{2015}{2}+1\right)+1\)

     =    \(\frac{2017}{2016}+\frac{2017}{2015}+\frac{2017}{2014}+...\frac{2017}{2}+\frac{2017}{2017}\)

     =  \(2017\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}\right)\)

  \(\Rightarrow\frac{A}{B}=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}}\)

                = 2017

Chúc bạn học giỏi!

22 tháng 3 2018

ghtyuhyui

20 tháng 3 2016

xét mẫu(chỗ 1/2014 sửa lại thành 2/2014)

=(1/2015+1)+(2/2014+1)+...+(2013/3+1)+(2014/2+1)+(2015/1-2014)

=2016/2015+2016/2014+...+2016/3+2016/2+1

=2016.(1/2016+1/2015+...+1/4+1/3+1/2)

=> A= 1/2016

mún dễ hỉu hơn hãy gửi tin nhắn cho mik

20 tháng 3 2016

1 phan 2016. cac lam de lam