Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{1}{4}+\frac{1}{3}:2x=-5\)
\(\frac{1}{3}:2x=-5-\frac{1}{4}\)
\(\frac{1}{3}:2x=-\frac{21}{3}\)
\(2x=\frac{1}{3}:\left(\frac{-21}{3}\right)\)
\(2x=-\frac{1}{21}\)
\(x=\frac{-1}{42}\)
b)\(\left(3x-\frac{1}{4}\right).\left(x+\frac{1}{2}\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}3x-\frac{1}{4}=0\\x+\frac{1}{2}=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}3x=\frac{1}{4}\\x=-\frac{1}{2}\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{1}{12}\\x=-\frac{1}{2}\end{array}\right.\)
c)\(\left(2x-5\right).\left(\frac{3}{2}x+9\right).\left(0,3x-12\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x-5=0\\\frac{3}{2}x+9=0\\0,3x-12=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}2x=5\\\frac{3}{2}x=-9\\0,3x=12\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-6\\x=40\end{array}\right.\)
a) 1/4 + 1/3 : 2x = -5
=> 1/3 : 2x = -5 - 1/4
=> 1/3 : 2x = -21/4
=> 2x = 1/3 : (-21/4) = -4/63
=> x = -4/63 : 2 = -2/63
1) \(\left|2x+5\right|\ge21\Rightarrow2x+5\ge21\)hoặc \(2x+5<-21\)<=> \(x\ge8\) hoặc \(x<-13\)
2)
a) |2x-3|>=0 => A>=0-5=-5 => Min A=-5 <=> x=3/2
b) \(\left|2x-1\right|+\left|3-2x\right|\ge\left|2x-1+3-2x\right|=\left|2\right|=2\Rightarrow B\ge2+5=7\)=> MinB=7 <=>x=1
3)
\(\left|2x-1\right|\ge0\Rightarrow-\left|2x-1\right|\le0\Leftrightarrow A\le0+7=7\Rightarrow MaxA=7\Leftrightarrow x=-\frac{1}{2}\)
b)
th1: nếu x<-3/2 => B=-2x-3+2x+2=-1
th2: nếu \(-\frac{3}{2}\le x\le-1\)=> B=2x+3+2x+2=4x+5
ta có:\(-\frac{3}{2}\le x\le-1\Rightarrow-6\le4x\le-4\Leftrightarrow-1\le4x+5\le1\Rightarrow-1\le B\le1\)
th3: nếu x>-1 => B=2x+3-2x-2=1=>
Max B=1 <=> x>-1 hoặc \(-\frac{3}{2}\le x\le-1\)
2b) Áp dụng bất đẳng thức giá trị tuyệt đối: |a| + |b| \(\ge\) |a + b|. Dấu "=" xảy ra khi tích a.b \(\ge\) 0
Ta có: B = |2x - 1| + |3 - 2x| + 5 \(\ge\) |2x - 1+3 - 2x| + 5 = |2| + 5 = 7
=> Min B = 7 khi
(2x - 1)( 3 - 2x) \(\ge\) 0 => (2x - 1)(2x - 3) \(\le\) 0
Mà 2x - 1 > 2x - 3 nên 2x - 1 \(\ge\) 0 và 2x - 3 \(\le\) 0
=> x \(\ge\) 1/2 và x \(\le\) 3/2
a, 11/12 - ( 2/5 + x ) = 2/3
<=> \(\frac{2}{5}+x=\frac{11}{12}-\frac{2}{3}=\frac{1}{4}\)
=> x=\(\frac{1}{4}-\frac{11}{12}=-\frac{2}{3}\)
b, 2x . ( x - 1/7 ) = 0
<=>\(\left[\begin{array}{nghiempt}x=0\\x-\frac{1}{7}=0\end{array}\right.\)<=> \(\left[\begin{array}{nghiempt}x=0\\x=\frac{1}{7}\end{array}\right.\)
vậy x={\(0;\frac{1}{7}\)}
c, 3/4 + 1/4 : x = 2/5
<=>\(\frac{1}{4}:x=\frac{2}{5}-\frac{3}{4}=-\frac{7}{20}\)
<=> \(x=\frac{1}{4}:\left(-\frac{7}{20}\right)=-\frac{5}{7}\)
vậy x=-5/7
a) \(\frac{11}{12}-\left(\frac{2}{5}+x\right)=\frac{2}{3}\)
\(\Leftrightarrow\frac{11}{12}-\frac{2}{5}-x=\frac{2}{3}\)
\(\Leftrightarrow-x=\frac{2}{3}-\frac{11}{12}+\frac{2}{5}=\frac{3}{20}\)
\(\Leftrightarrow x=-\frac{3}{20}\)
b) \(2x\left(x-\frac{1}{7}\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x-\frac{1}{7}=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=\frac{1}{7}\end{array}\right.\)
c) \(\frac{3}{4}+\frac{1}{4}:x=\frac{2}{5}\)
\(\Leftrightarrow\frac{1}{4x}=\frac{2}{5}-\frac{3}{4}=-\frac{7}{20}\)
\(\Leftrightarrow4x=\frac{-20}{7}\)
\(\Leftrightarrow x=-\frac{5}{7}\)
Sửa đề : a) Tìm GTNN A
a) \(A=\left|x-5\right|+3\)có : \(\left|x-5\right|\ge0\Rightarrow\left|x-5\right|+3\ge0\)
\(\Leftrightarrow A\ge3\)dấu "=" xảy ra khi : \(\left|x-5\right|=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)
Vậy GTNN A = 3 khi x = 5.
b) \(C=-\left|x+1\right|+5\)có : \(-\left|x+1\right|\le0\Rightarrow-\left|x+1\right|+5\le5\)
\(\Leftrightarrow C\le5\)dấu "=" xảy ra khi : \(-\left|x+1\right|=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy GTLN C = 5 khi x = -1.
\(D=5-\left|2x+3\right|\)có : \(-\left|2x+3\right|\le0\Rightarrow5-\left|2x+3\right|\le5\)
\(\Leftrightarrow D\le5\)dấu "=" xảy ra khi : \(-\left|2x+3\right|=0\Leftrightarrow2x+3=0\Leftrightarrow x=-\frac{3}{2}\)
Vậy GTLN D = 5 khi x = -3/2.
c) \(\left|x-3\right|+\left|y+1\right|=0\)có \(\left|x-3\right|\ge0;\left|y+1\right|\ge0\Rightarrow\left|x-3\right|+\left|y+1\right|\ge0\)
\(\Rightarrow\hept{\begin{cases}\left|x-3\right|=0\\\left|y+1\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-1\end{cases}}.\)
\(\frac{1}{4}+\frac{1}{3}:2x=-5\)
\(\frac{1}{3}:2x=-5-\frac{1}{4}\)
\(\frac{1}{3}:2x=\frac{-21}{4}\)
\(2x=\frac{1}{3}:\frac{-21}{4}\)
\(2x=\frac{-4}{63}\)
\(x=\frac{-4}{63}:2\)
\(x=\frac{-2}{63}\)
\(\)
\(\frac{1}{4}+\frac{1}{3}:2x=-5\)
\(\Rightarrow\frac{1}{3}:2x=-\frac{21}{4}\)
\(\Rightarrow2x=\frac{-4}{63}\)
\(\Rightarrow x=\frac{-2}{63}\)
\(\left(3x-\frac{1}{4}\right)\left(x+\frac{1}{2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-\frac{1}{4}=0\\x+\frac{1}{2}=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{12}\\x=\frac{-1}{2}\end{cases}}}\)
\(\left(2x-5\right)\left(\frac{3}{2}x+9\right)\left(0,3x-12\right)=0\)
Th1 : \(2x-5=0\Rightarrow x=\frac{5}{2}\)
Th2 : \(\frac{3}{2}x+9=0\Rightarrow x=-6\)
Th3 : \(0,3x-12=0\Rightarrow x=\frac{12}{0,3}\)