Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì x:y:z = 3:4:5 =>\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
=>\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}=\frac{2x^2}{18}=\frac{3y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3x^2}{18+32-75}=\frac{-100}{-25}=4\)
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}=4\)
=>(x;y;z)=(6;8;10),(-6;-8;-10)
B2
Ta có:
\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=......=\frac{a_9-9}{1}\)=\(\frac{a_1+a_2+......+a_9-45}{45}=\frac{90-45}{45}=1\)
=>\(\frac{a_1-1}{9}=1;\frac{a_2-2}{8}=1;.......\frac{a_9-9}{1}=1\)
=>a1=a2=......=a9=10
Bài 1:
\(A=\frac{a+b}{b+c}.\)
Ta có:
\(\frac{b}{a}=2\Rightarrow\frac{b}{2}=\frac{a}{1}\) (1)
\(\frac{c}{b}=3\Rightarrow\frac{c}{3}=\frac{b}{1}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{b}{2}=\frac{c}{6}.\)
\(\Rightarrow\frac{a}{1}=\frac{b}{2}=\frac{c}{6}=\frac{a+b}{3}=\frac{b+c}{8}.\)
\(\Rightarrow A=\frac{a+b}{b+c}=\frac{3}{8}\)
Vậy \(A=\frac{a+b}{b+c}=\frac{3}{8}.\)
Bài 2:
a) \(\frac{72-x}{7}=\frac{x-40}{9}\)
\(\Rightarrow\left(72-x\right).9=\left(x-40\right).7\)
\(\Rightarrow648-9x=7x-280\)
\(\Rightarrow648+280=7x+9x\)
\(\Rightarrow928=16x\)
\(\Rightarrow x=928:16\)
\(\Rightarrow x=58\)
Vậy \(x=58.\)
b) \(\frac{x+4}{20}=\frac{5}{x+4}\)
\(\Rightarrow\left(x+4\right).\left(x+4\right)=5.20\)
\(\Rightarrow\left(x+4\right).\left(x+4\right)=100\)
\(\Rightarrow\left(x+4\right)^2=100\)
\(\Rightarrow x+4=\pm10.\)
\(\Rightarrow\left[{}\begin{matrix}x+4=10\\x+4=-10\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=10-4\\x=\left(-10\right)-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6\\x=-14\end{matrix}\right.\)
Vậy \(x\in\left\{6;-14\right\}.\)
Chúc bạn học tốt!
Bài 2:
a, \(\frac{72-x}{7}=\frac{x-40}{9}\)
\(\Rightarrow\left(72-x\right).9=\left(x-40\right).7\)
\(\Rightarrow9.72-9.x=7.x-7.40\)
\(\Rightarrow648-9x=7x-280\)
\(\Rightarrow-9x-7x=-280-648\)
\(\Rightarrow-16x=-648\)
\(\Rightarrow x=58\)
Vậy \(x=58\)
Bài 1:
Áp dụng TCDTSBN có:
\(\frac{a1-1}{9}=\frac{a2-2}{8}=...=\frac{a9-9}{1}=\frac{a1-1+a2-2+...+a9-9}{9+8+...+1}=\frac{\left(a1+...+a9\right)-\left(1+2+...+9\right)}{45}=\frac{90-45}{45}=1\)
\(\Rightarrow\frac{a1-1}{9}=1\Rightarrow a1=10\)
\(\frac{a2-2}{8}=1\Rightarrow a2=10\)
.....
\(\frac{a9-9}{1}=1\Rightarrow a9=10\)
Vậy a1=a2=...=a9=10
2,
a, \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}\Rightarrow\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=4\)
=> x=6, y=8, z=10
b, \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\Rightarrow\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}=\frac{5z-25-3x+3-4y-12}{30-6-16}=\frac{\left(5x-3x-4y\right)-\left(25-3+12\right)}{8}=\frac{50-34}{8}=2\)
=> x-1/2 = 2 => x=5
y+3/4=2=>y=5
z-5/6=2=>z=17
Bài 1 : Giải
a1−19=a2−28=a3−37=...=a9−91a1−19=a2−28=a3−37=...=a9−91
Theo tính chất dãy tỉ số bằng nhau →a1−19=a2−28=a3−37=...=a9−91=a1−1+a2−2+a3−3+a4−4+...+a9−99+8+7+...+3+2+1=(a1+a2+a3+...+a9)−4545=90−4545=1→a1−19=a2−28=a3−37=...=a9−91=a1−1+a2−2+a3−3+a4−4+...+a9−99+8+7+...+3+2+1=(a1+a2+a3+...+a9)−4545=90−4545=1
a1−1=9→a1=10a2−2=8→a2=10a3−3=7→a3=10...a9−9=1→a9=10a1−1=9→a1=10a2−2=8→a2=10a3−3=7→a3=10...a9−9=1→a9=10
Vậy a1=a2=a3=...=a9=10
1)Ta có ; x:y:z=3:4:5 =>\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x^2}{3^2}=\frac{y^3}{4^3}=\frac{z^2}{5^2}\Rightarrow\frac{2x^2}{18}=\frac{2y^3}{128}=\frac{3z^2}{75}\)
áp đụng tính chất của dãy tỉ số bằng nhau và 2x2+2y3-3z2=-100
Ta được : \(\frac{2x^2}{18}=\frac{2y^3}{128}=\frac{3z^2}{75}=\frac{2x^2+2y^3-3z^2}{18+128-75}=\frac{-100}{71}\)
CÒN LẠI BẠN TỰ TÍNH NHÉ
2)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a^1-1}{9}=\frac{a^2+2}{8}=...=\frac{a^9-9}{1}\)
=\(\frac{a^1-1+a^2-2+...+a^9-9}{9+8+...+1}=\frac{\left(a^1+a^2+...+a^9\right)-\left(9+8+...+1\right)}{9+8+...+1}\)
=\(\frac{90-45}{45}=\frac{45}{45}=1\)
suy ra:\(\frac{a^1-1}{9}=1\Rightarrow a^1=10\)tương tự ta có: a1=a2=...=a9=10