Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ \(\dfrac{x}{y}=\dfrac{9}{7}\)ta có : \(x=\dfrac{9y}{7}\)(1) ;
Từ \(\dfrac{y}{z}=\dfrac{7}{3}\)ta có: \(z=\dfrac{3y}{7}\)(2);
Thay (1) và (2) vào biểu thức trên ta có:
\(\left(\dfrac{9y}{7}\right)^2-\left(\dfrac{9y^2}{7}\right)+\left(\dfrac{3y}{7}\right)^2=27=>\dfrac{81y^2}{49}-\dfrac{63y^2}{49}+\dfrac{9y^2}{49}=27\)
\(=>\dfrac{27y^2}{49}=27=>27y^2=27.49=1323\)
\(=>y^2=1323:27=49=>y=7;-7\)
Lần lượt thay y =7; -7 vào hệ thức ta tìm được:
\(y=7;x=9;z=3\)và \(y=-7;x=-9;z=-3\)
CHÚC BẠN HỌC TỐT...
\(xy-3x-y=6\)
\(=>xy+3x-y-3=6-3\)
\(=>x\left(y+3\right)-\left(y+3\right)=3\)
\(=>\left(y+3\right)\left(x-1\right)=3\)
y+3 | -1 | 3 | 1 | -3 | |
x-1 | -3 | 1 | 3 | -1 |
y+3 | -1 | 3 | -3 | 1 |
y | -4 | -1 | -7 | -3 |
x-1 | -3 | 1 | 3 | -1 |
x | -2 | 2 | 4 | 0 |
Bài 1: Vì: 2x^3 - 1 = 15
=> 2x^3 = 16
=> x^3 = 8
=> x = 2 (1)
Ta có:
* (x + 16)/9 = (y - 25)/16
<=> (2 + 16)/9 = (y - 25)/16
<=> 18/9 = (y - 25)/16
<=> 2 = (y - 25)/16
<=> y - 25 = 16.2 = 32
=> y = 32+25 = 57 (2)
* (x + 16)/9 = (z + 9)/25
<=> (2 + 16)/9 = (z + 9)/25
<=> 2 = (z + 9)/25
<=> z + 9 = 25.2 = 50
=> z = 50 - 9 = 41 (3)
Từ (1), (2) và (3) => x + y + z = 2 + 57 + 41 = 100
Bài 2:
c) vì a,b,c là độ dài các cạnh của tam giác:
\(\Rightarrow\left\{{}\begin{matrix}a< b+c\\b< a+c\\c< a+b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{b+c}< 1\\\dfrac{b}{a+c}< 1\\\dfrac{c}{a+b}< 1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{b+c}< \dfrac{2a}{a+b+c}\\\dfrac{b}{a+c}< \dfrac{2b}{a+b+c}\\\dfrac{c}{a+b}< \dfrac{2c}{a+b+c}\end{matrix}\right.\)
\(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}< \dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}\)
\(\Rightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\) (đpcm)
hỏi mỗi từng câu 1 thôi nhé ! Vậy mình giải cho . Mình k có ý kiếm GP + SP đâu . Nhưng nhìn 8 câu này hoa hết cả mắt :v
Đúng thật. Tớ nhìn cũng thấy ngán mà. Nhiều quá nên hơi nản
Ta có:\(\dfrac{x^2}{4}=\dfrac{x}{2};\dfrac{y^2}{9}=\dfrac{y}{3};\dfrac{z^2}{25}=\dfrac{z}{5}\)
Aps dụng tính chất dãy tỉ số bằn nhau:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)
=>\(\dfrac{x}{2}=1=>x=2\)
\(\dfrac{y}{3}=1=>y=3\)
\(\dfrac{z}{5}=1=>z=5\)
Vậy x=2, y=3, z=5
Ta có : \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)
\(\Leftrightarrow x=2;y=3;z=5\)