K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 10 2024

Bài 1: $x$ có thêm điều kiện gì không bạn?

AH
Akai Haruma
Giáo viên
12 tháng 10 2024

Bài 2:

$P=\frac{x^2+y^2+3}{x^2+y^2+2}=\frac{(x^2+y^2+2)+1}{x^2+y^2+2}=1+\frac{1}{x^2+y^2+2}$
Ta thấy:

$x^2\geq 0; y^2\geq 0$ với mọi $x,y$

$\Rightarrow x^2+y^2+2\geq 2$

$\Rightarrow P\leq 1+\frac{1}{2}=\frac{3}{2}$
Vậy GTNN của $P$ là $\frac{3}{2}$
Giá trị này đạt tại $x^2=y^2=0\Leftrightarrow x=y=0$

a.

Chứng minh ΔCHO=ΔCFOΔCHO=ΔCFO (cạnh huyền – góc nhọn)

suy ra: CH = CF. Kết luận ΔFCHΔFCH cân tại C.

- Vẽ IG //AC (G ∈∈ FH). Chứng minh ΔFIGΔFIG cân tại I.

- Suy ra: AH = IG, và ∠IGK=∠AHK∠IGK=∠AHK.

- Chứng minh ΔAHK=ΔIGKΔAHK=ΔIGK (g-c-g).

- Suy ra AK = KI..

b.

Vẽ OE ⊥⊥ AB tại E. Tương tự câu a ta có: ΔAEH,ΔBEFΔAEH,ΔBEF thứ tự cân tại A, B. Suy ra: BE = BF và AE = AH.

BA = BE + EA = BF + AH = BF + FI = BI. Suy ra: ΔABIΔABI cân tại B.

Mà BO là phân giác góc B, và BK là đường trung tuyến của ΔABIΔABI nên: B, O, K là ba điểm thẳng hàng.

4 tháng 2 2019

bài 2b.

\(\left|x-y\right|+\left|y-z\right|+\left|z-x\right|=2019\)

\(\Rightarrow\left|x-y\right|+\left|y-z\right|+\left|z-x\right|+\left(x-y\right)+\left(y-z\right)+\left(z-x\right)=2019\)

\(\Rightarrow\left|x-y\right|+x-y+\left|y-z\right|+y-z+\left|z-x\right|+z-x=2019\)

Với \(a< 0\left(a\in Z\right)\)ta có:\(\left|a\right|+a=-a+a=0⋮2\)

Với \(a=0\)ta có:\(\left|a\right|+a=0⋮2\)

Với \(a>0\)ta có:\(\left|a\right|+a=2a⋮2\)

Vậy với mọi số nguyên a thì ta luôn có:\(\left|a\right|+a⋮2\)

Áp dụng vào bài toán,ta được:\(\left|x-y\right|+x-y+\left|y-z\right|+y-z+\left|z-x\right|+z-x⋮2\)

\(\Rightarrow2019⋮2\)(vô lý)

Vậy không thể tồn tại số nguyên x,y,z thỏa mãn:\(\left|x-y\right|+\left|y-z\right|+\left|z-x\right|=2019\)

12 tháng 3 2019

2.a.\(A=6x^2y-\frac{2}{3}x^2y-\frac{4}{3}x^2y=4x^2y\)

b. Thay x=-2; y=\(\frac{1}{8}\):

\(A=4\left(-2\right)^2.\frac{1}{8}=2\)

31 tháng 12 2015

Câu1 :K=2

Câu 2:a=-5;-1;1;5

Câu 3:x=5

Câu4:x=3

Câu 5:-1

31 tháng 12 2015

CHTT nha

17 tháng 8 2016

Bài 4

\(127^{23}< 128^{23}=\left(2^7\right)^{23}=2^{7.23}=2^{161}\)

\(513^{18}>512^{18}=\left(2^9\right)^{18}=2^{9.18}=2^{161}\)

Vì \(127^{23}< 2^{161}< 513^{18}\)nên \(127^{23}< 513^{18}\)

Khả năng của mình chỉ làm được 2 bài thôi. Các bạn thông cảm!

17 tháng 8 2016

Bài 3

\(3^{n+2}-2^{n+2}+3^n-2^n=3^n.3^2-2^n.2^2+3^n-2^n.\)

\(=\left(3^n.9+3^n\right)-\left(2^n.4+2^n\right)=3^n.\left(9+1\right)-2^n\left(4+1\right)\)

\(=3^n.10-2^n.5=3^n.10-2^{n-1}.2.5=3^n.10-2^{n-1}.10=10\left(3^n-2^{n-1}\right).\)chia hết cho 10