Bài 1: a, Tìm số nguyên a để tích hai phân số \(\frac{-19}{5}\) và \(\frac{a}{a-1}\)là một số nguyên.b, Tìm số nguyên a để \(\frac{5}{4}\): \(\frac{a}{a+1}\)được thương là một số nguyên.c,Tìm phân số dương \(\frac{a}{b}\)nhỏ nhất sao cho khi chia \(\frac{a}{b}cho\frac{7}{9}\)hoặc khi chia cho \(\frac{5}{12}\)được mỗi thương là một số tự nhiênBài 2:a,Với giá trị nào của x thì ta...
Đọc tiếp
Bài 1: a, Tìm số nguyên a để tích hai phân số \(\frac{-19}{5}\) và \(\frac{a}{a-1}\)là một số nguyên.
b, Tìm số nguyên a để \(\frac{5}{4}\): \(\frac{a}{a+1}\)được thương là một số nguyên.
c,Tìm phân số dương \(\frac{a}{b}\)nhỏ nhất sao cho khi chia \(\frac{a}{b}cho\frac{7}{9}\)hoặc khi chia cho \(\frac{5}{12}\)được mỗi thương là một số tự nhiên
Bài 2:a,Với giá trị nào của x thì ta có:
1,A= \(\left(x-\frac{3}{4}\right)\left(x+\frac{1}{2}\right)\)là số dương 2,B=\(\frac{x-0,5}{x+1}\)là số âm.
b,Cho phân số \(\frac{a}{b}\left(b\ne0\right)\).Tìm phân số \(\frac{c}{d}\left(c\ne0,d\ne0\right)\)sao cho \(\frac{a}{b}:\frac{c}{d}=\frac{a}{b}.\frac{c}{d}\)
c, Tìm các cặp số nguyên (x,y) để: \(B=\frac{1}{x-y}:\frac{x+2}{2\left(x-y\right)}\)là số nguyên.
Bài 3: a, Tính : A=\(\left(-2\right)\left(-1\frac{1}{2}\right)\left(-1\frac{1}{3}\right)\left(-1\frac{1}{4}\right)...\left(-1\frac{1}{n}\right)\left(n\in N,n\ne0\right)\)
B=\(\frac{4\frac{1}{4}}{11\frac{1}{3}.5\frac{1}{4}}\) C= \(\frac{-1:1\frac{1}{15}}{3\frac{1}{8}:6\frac{2}{3}}:\frac{4\frac{7}{8}:13}{5:1\frac{7}{8}}\) D=\(-\frac{7}{4}\left(\frac{33}{12}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)\)
E=\(\frac{1}{2}:\left(-1\frac{1}{2}\right):1\frac{1}{3}:\left(-1\frac{1}{4}\right):1\frac{1}{5}:\left(-1\frac{1}{6}\right):...:\left(-1\frac{1}{100}\right)\) F=\(4+\frac{1}{1+\frac{1}{1+\frac{2}{1+\frac{3}{4}}}}\)
1) Các phân số trên có các mẫu số là 3, 7, 9
Vậy để a nhỏ nhất làm các tích trên là số nguyên thì a phải là BCNN(3,7,9) = 63
=> a=63
2) \(\frac{4}{5}< \frac{a}{b}< \frac{14}{15}\Rightarrow\frac{4b}{5}< a< \frac{14b}{15}\)
\(\Rightarrow\frac{32b}{5}< 8a< \frac{112b}{15}\Rightarrow\frac{62b}{5}< 8a+6b< \frac{202b}{15}\Rightarrow\frac{62}{5}b< 2012< \frac{202}{15}b\)
\(\Rightarrow149< b\le162\)Vì \(a=\frac{2012-6b}{8}\Rightarrow130< a\le139\)
Xét \(8a+6b=2012\Leftrightarrow4a+3b=1006\)Vì 4a và 1006 là các số chẵn nên 3b phải chẵn => b chẵn
Vì 4a chia hết cho 4 còn 1006 chia 4 dư 2 nên 3b chia 4 dư 2 => b chia 4 dư 2
Lúc này b chỉ có thể là 150, 154, 158, 162 --> thế vào tìm a
Vậy các phân số cần tìm là: \(\frac{139}{150},\frac{136}{154},\frac{133}{158},\frac{130}{162}\)