Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có 1+y+y2 >0 => y3+y2+y+1> y3 => y3 < x3
ta lại có 2y+2y2>0 (với x 0 và x khác -1)
=> y3+3y2+3y+1 > y3+y2+y+1
=> y3<x3<(y+1)3
=> y<x<y+1
Vì x,y nguyên nên y và y+1 là 2 số nguyên liên tiếp mà x nằm giữa 2 số nguyên liên tiếp mà x nguyên nên vô lí
=> x=-1 hoặc x=0
Tự giải tiếp nhé
\(x^2+x+3=y^2\)
\(\Leftrightarrow4x^2+4x+12=4y^2\)
\(\Leftrightarrow\left(2x+1\right)^2-4y^2=-11\)
\(\Leftrightarrow\left(2x+1-2y\right)\left(2x+1+2y\right)=-11\)
Lập bảng ra
x2+x+13=y2<=>4(x2+x+13)=4y2<=>4x2+4x+52=4y2<=>(4x2+4x+1)+51=4y2
<=>(2x+1)2+51=(2y)2<=>(2y)2-(2x+1)2=51<=>(2y-2x-1)(2y+2x+1)=51
đến đây giải kiểu pt ước số
x2 = y ( y + 1 ) ( y + 2 ) ( y + 3 )
x2 = ( y2 + 3y ) ( y2 + 3y + 2 )
đặt y2 + 3y + 1 = a
\(\Rightarrow\)x2 = ( a - 1 ) ( a + 1 ) = a2 - 1
\(\Rightarrow\)( x - a ) ( a + x ) = -1
từ đó tìm đươc x,y