K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2016

Bạn cho các đa thức bằng 0 rùi tìm x la xong

16 tháng 7 2016

Làm đi nói rứa ai mà chẳng biết

29 tháng 4 2015

1) Ta có: 2x2 + 2x + 1 = 0

<=> x2 + (x2 + 2x + 1) = 0

<=> x2 + (x+ 1)2 = 0 <=> x = x+ 1 = 0       (Vì x2 \(\ge\) 0 và (x+ 1)2 \(\ge\) 0 với mọi x)

x = x+ 1 => 0 = 1 Vô lý

Vậy đa thức đã cho ko có nghiệm

2) a) x3-2x2-5x+6  = 0

=> x3 - x2 - x2 + x - 6x + 6 = 0

=> ( x3 - x2) - (x2 - x)  - (6x - 6) = 0 => x2.(x- 1) - x(x - 1) - 6(x - 1) = 0

=> (x - 1).(x2 - x - 6) = 0 => (x -1).(x2 - 3x + 2x - 6) = 0

=> (x- 1).[x(x - 3) + 2.(x - 3)] = 0 => (x - 1).(x + 2).(x - 3) = 0 

=> x- 1= 0 hoặc x + 2 = 0 hoặc x - 3 = 0

=> x = 1 hoặc x = -2 hoặc x = 3

Đa thức đã cho có 3 nghiệm là: 1; -2 ; 3

b) x3 + 3x2 - 6x - 8 = 0

=>  x3 +  x2 + 2x2 + 2x - 8x - 8 = 0

=> x2.(x + 1) + 2x.(x + 1) - 8 (x + 1) = 0

=> (x+ 1). [x2 + 2x - 8] = 0

=> (x+1).[x2 + 4x - 2x - 8] = 0 => (x +1).[x.(x+4) - 2.(x+4)] = 0

=> (x +1). (x -2). (x+4) = 0 

=> x+ 1 hoặc x - 2 = 0 hoặc x+ 4 = 0

=> x = -1 hoặc x = 2 hoặc x = -4

Đa thức đã cho có 3 nghiệm là -1; 2; -4

 

6 tháng 12 2016

x+(-2x)=(-70+(-3)

11 tháng 8 2020

3)  tìm m để x = -1 là nghiệm của đa thức M(x) = x^2 - mx +2

\(\Rightarrow M\left(x\right)=x^2-mx+2\)

\(\Leftrightarrow\left(-1\right)^2-m\left(-1\right)+2=0\)

\(\Leftrightarrow1-m\left(-1\right)=-2\)

\(\Leftrightarrow m\left(-1\right)=3\)

\(\Leftrightarrow m=-3\)

vậy với m = -3 thì x= -1 là nghiệm của đa thức M(x)

4) \(K\left(x\right)=a+b\left(x-1\right)+c\left(x-1\right)\left(x-2\right)\)

\(\Leftrightarrow K\left(1\right)=a+b\left(1-1\right)+c\left(1-1\right)\left(1-2\right)=1\)

\(\Leftrightarrow a=1\)

\(\Leftrightarrow K\left(2\right)=a+b\left(2-1\right)+c\left(2-1\right)\left(2-2\right)=3\)

\(\Leftrightarrow K\left(2\right)=a+b=3\)

\(\Leftrightarrow K\left(0\right)=a+b\left(0-1\right)+c\left(0-1\right)\left(0-2\right)=5\)

\(\Leftrightarrow a+\left(-b\right)+c2=5\)

ta có \(\hept{\begin{cases}a=1\\a+b=3\\a+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\1+b=3\\1+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\-1+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c2=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)

vậy \(a=1;b=2;c=3\)

11 tháng 8 2020

1. a) Sắp xếp :

f(x) = -x5 - 7x4 - 2x3 + x4 + 4x + 9

g(x) = x5 + 7x4 + 2x3 + 2z2 - 3x - 9

b) h(x) = f(x) + g(x)

           = -x5 - 7x4 - 2x3 + x2 + 4x + 9 + x5 + 7x4 + 2x3 + 2x2 - 3x - 9

           = ( x5 - x5 ) + ( 7x4 - 7x4 ) + ( 2x3 - 2x3 ) + ( 2x2 + x2 ) - 3x + ( 9 - 9 )

           = 3x2- 3x

c) h(x) có nghiệm <=> 3x2 - 3x = 0

                             <=> 3x( x - 1 ) = 0

                             <=> 3x = 0 hoặc x - 1 = 0

                             <=> x = 0 hoặc x = 1

Vậy nghiệm của h(x) là x= 0 hoặc x = 1

2. D(x) = A(x) + B(x) - C(x)

            = 6x3 + 5x2 + x3 - x2 - ( -2x3 + 4x2 )

            = 6x3 + 5x2 + x3 - x2 + 2x3 - 4x2

            = ( 6x3 + x3 + 2x3 ) + ( 5x2 - x2 - 4x2 ) 

            = 9x3 

b) D(x) có nghiệm <=> 9x3 = 0 => x = 0 

Vậy nghiệm của D(x) là x = 0

3. M(x) = x2 - mx + 2

x = -1 là nghiệm của M(x)

=> M(-1) = (-1)2 - m(-1) + 2 = 0

=>              1 + m + 2 = 0

=>              3 + m = 0

=>              m = -3

Vậy với m = -3 , M(x) có nghiệm x = -1

4. K(x) = a + b( x - 1 ) + c( x - 1 )( x - 2 )

K(1) = 1 => a + b( 1 - 1 ) + c( 1 - 1 )( 1 - 2 ) = 1

              => a + 0b + c.0.(-1) = 1

              => a + 0 = 1

              => a = 1

K(2) = 3 => 1 + b( 2 - 1 ) + c( 2 - 1 )( 2 - 2 ) = 3

              => 1 + 1b + c.1.0 = 3

              => 1 + b + 0 = 3

              => b + 1 = 3

              => b = 2

K(0) = 5 => 1 + 5( 0 - 1 ) + c( 0 - 1 )( 0 - 2 ) = 5

              => 1 + 5(-1) + c(-1)(-2) = 5

              => 1 - 5 + 2c = 5

              => 2c - 4 = 5

              => 2c = 9

              => c = 9/2

Vậy a = 1 ; b = 2 ; c = 9/2

a/ M(x)+N(x)=(3x3+3x3)+(x2+2x2)-(3x+x)+(5+9)

                    =6x3+3x2-4x+14

b/ Ta có: M(x)+N(x)-P(x)=6x3+3x2+2x

=> P(x)=M(x)+N(x)-6x3+3x2+2x=-6x

c/ P(x)=-6x=0

=> x=0 là nghiệm đa thức P(x)

d/ Ta có: x2+4x+5

=x.x+2x+2x+2.2+1

=x(x+2)+2(x+2)+1

=(x+2)(x+2)+1

=(x+2)2+1

Mà (x+2)2\(\ne0\)=> Đa thức trên \(\ge1\)

=> Đa thức trên vô nghiệm.

31 tháng 3 2018

1/

a/ Đặt f (x) = x2 - 3

Khi f (x) = 0

=> \(x^2-3=0\)

=> \(x^2=3\)

=> \(x=\sqrt{3}\)

Vậy \(\sqrt{3}\)là nghiệm của đa thức x2 - 3.

b/ Đặt g (x) = x2 + 2

Khi g (x) = 0

=> \(x^2+2=0\)

=> \(x^2=-2\)

=> \(x\in\varnothing\)

Vậy x2 + 2 vô nghiệm.

c/ Đặt P (x) = x2 + (x2 + 3)

Khi P (x) = 0

=> \(x^2+\left(x^2+3\right)=0\)

=> \(\hept{\begin{cases}x^2=0\\x^2+3=0\end{cases}}\)=> \(\hept{\begin{cases}x=0\\x=\sqrt{3}\end{cases}}\)(loại)

Vậy x2 + (x2 + 3) vô nghiệm.

d/ Đặt \(Q\left(x\right)=2x^2-\left(1+2x^2\right)+1\)

Khi Q (x) = 0

=> \(2x^2-\left(1+2x^2\right)+1=0\)

=> \(2x^2-\left(1+2x^2\right)=-1\)

=> \(2x^2-1-2x^2=-1\)

=> -1 = -1

Vậy đa thức \(2x^2-\left(1+2x^2\right)+1\)có vô số nghiệm.

e/ Đặt \(h\left(x\right)=\left(2x-1\right)^2-16\)

Khi h (x) = 0

=> \(\left(2x-1\right)^2-16=0\)

=> \(\left(2x-1\right)^2=16\)

=> \(2x-1=4\)

=> 2x = 5

=> \(x=\frac{5}{2}\)

Vậy đa thức \(\left(2x-1\right)^2-16\)có nghiệm là \(\frac{5}{2}\).

13 tháng 2 2022

\(a.\left(2x-3\right)+\left(x+9\right)=0\)

\(3x+6=0\Rightarrow x=-2\)

\(b.10x-2x^2=0\)

\(\Rightarrow10x=2x^2\Rightarrow x=5\)

\(c.2x^2-5x-7=0\)

\(2x^2+2x-7x-7=0\)

\(2x\left(x+1\right)-7\left(x+1\right)=0\)

\(\left(2x-7\right)\left(x+1\right)=0\Rightarrow\orbr{\begin{cases}2x-7=0\\x+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3,5\\x=-1\end{cases}}\)

13 tháng 2 2022

a, Ta có : \(2x-3+x+9=0\Leftrightarrow3x+6=0\Leftrightarrow x=-2\)

b, \(-2x^2+10x=0\Leftrightarrow-2x\left(x-5\right)=0\Leftrightarrow x=0;x=5\)

c, \(2x^2-7x+2x-7=0\Leftrightarrow\left(x+1\right)\left(2x-7\right)=0\Leftrightarrow x=-1;x=\frac{7}{2}\)

13 tháng 6 2017

Câu 1:

a, Ta có: \(x^2-2x=0\)

\(\Rightarrow x\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy x = 0 hoặc x = 2 là nghiệm của \(x^2-2x\)

b, Ta có: \(x^3-3x=0\)

\(\Rightarrow x\left(x^2-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{3}\end{matrix}\right.\)

Vậy \(x=0;x=\sqrt{3}\) là nghiệm của \(x^3-3x\)

Câu 2:

a, Ta có: \(x^4+2x^2+1=\left(x^2+1\right)^2\)

Ta thấy: \(x^2+1\ge1\)

\(\Rightarrow\left(x^2+1\right)^2\ge1>0\)

\(\Rightarrow x^4+2x^2+1\) vô nghiệm

Vậy đa thức \(x^4+2x^2+1\) không có nghiệm

b, Ta có: \(x^2+2x+3=x^2+2x+1+2=\left(x+1\right)^2+2\)

Ta thấy \(\left(x+1\right)^2+2\ge2>0\)

\(\Rightarrow x^2+2x+3\) vô nghiệm

Vậy \(x^2+2x+3\) không có nghiệm

c, \(x^2+6x+10=x^2+6x+9+1=\left(x+3\right)^2+1\)

Ta có: \(\left(x+3\right)^2+1\ge1>0\)

\(\Rightarrow x^2+6x+10\) vô nghiệm

Vậy đa thức \(x^2+6x+10\) không có nghiệm

13 tháng 6 2017

Bài 1:

a/Ta có: \(x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\Rightarrow x=2\end{matrix}\right.\)

b/Có: \(x^3-3x=0\)

\(\Leftrightarrow x\left(x^2-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-3=0\Rightarrow x^2=3\Rightarrow\left[{}\begin{matrix}x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\end{matrix}\right.\)

Bài 2:

a/ \(x^4+2x^2+1\) \(=\left(x^2\right)^2+2x^2\cdot1+1^2=\left(x^2+1\right)^2\)

\(Vì\) \(x^2\ge0\forall x\Rightarrow x^2+1>0\)

\(\Rightarrow\left(x^2+1\right)^2>0\) => Đa thức vô nghiệm (đpcm)

b/ \(x^2+2x+3=x^2+2x\cdot1+1+2=\left(x+1\right)^2+2\)

Có: \(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+2\ge2>0\)

=> đa thức vô nghiệm (đpcm)

c/ \(x^2+6x+10=x^2+2\cdot x\cdot3+9+1=\left(x+3\right)^2+1\)

Có: \(\left(x+3\right)^2\ge0\forall x\Rightarrow\left(x+3\right)^2+1\ge1>0\)

=> đa thức vô nghiệm (đpcm)

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:       P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2  a) Xác định đa thức P(x) và Q(x)  b) Tìm nghiệm của đa thức P(x) và Q(x)  c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1...
Đọc tiếp

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:
       P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2
  a) Xác định đa thức P(x) và Q(x)
  b) Tìm nghiệm của đa thức P(x) và Q(x)
  c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2
Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1 đa thức bậc 5 và có 6 hạng tử
Bài 3: Cho đa thức P(x) = x+ 7x2- 6x3+ 3x4+ 2x2+ 6x- 2x4+ 1
   a) Thu gọn đa thức rồi sắp xếp các số hạng của đa thức theo lũy thừa giảm dần của biến x
   b) Xác định bậc của đa thức, hệ số tự do, hệ số cao nhất
   c) Tính P(-1); P(0); P(1); P(-a)
Bài 4: Cho đa thức bậc hai P(x) = ax2+ bx+ c với a ≠ 0
   a) Chứng tỏ rằng nếu đa thức có nghiệm x = 1 thì sẽ có nghiệm x = \(\dfrac{c}{a}\)
   b) Chứng tỏ rằng nếu đa thức có nghiệm x = -1 thì sẽ có nghiệm x = -\(\dfrac{c}{a} \)

1
7 tháng 4 2018

pan a ban giong bup be lam nhung bup be lam = nhua deo va no del co nao nhe

31 tháng 5 2016

Câu 1:    a) x = 1 là nghiệm của đa thức f(x)

              b) x = -1 là nghiệm của đa thức g(x)

              c) x = 1 là nghiệm của đa thức h(x)

Câu 2: Số 1 là ngiệm của đa thức f(x)