K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 8 2020

5.

\(y'=1-\frac{4}{\left(x-3\right)^2}=0\Leftrightarrow\left(x-3\right)^2=4\)

\(\Rightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=5\\x=1< 3\left(l\right)\end{matrix}\right.\)

BBT:

Chương 1:ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

Từ BBT ta có \(y_{min}=y\left(5\right)=7\)

\(\Rightarrow m=7\)

NV
13 tháng 8 2020

3.

\(y'=-2x^2-6x+m\)

Hàm đã cho nghịch biến trên R khi và chỉ khi \(y'\le0;\forall x\)

\(\Leftrightarrow\Delta'=9+2m\le0\)

\(\Rightarrow m\le-\frac{9}{2}\)

4.

\(y'=x^2-mx-2m-3\)

Hàm đồng biến trên khoảng đã cho khi và chỉ khi \(y'\ge0;\forall x>-2\)

\(\Leftrightarrow x^2-mx-2m-3\ge0\)

\(\Leftrightarrow x^2-3\ge m\left(x+2\right)\Leftrightarrow m\le\frac{x^2-3}{x+2}\)

\(\Leftrightarrow m\le\min\limits_{x>-2}\frac{x^2-3}{x+2}\)

Xét \(g\left(x\right)=\frac{x^2-3}{x+2}\) trên \(\left(-2;+\infty\right)\Rightarrow g'\left(x\right)=\frac{x^2+4x+3}{\left(x+2\right)^2}=0\Rightarrow x=-1\)

\(g\left(-1\right)=-2\Rightarrow m\le-2\)

Câu 1 : Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = \(\frac{x-1}{x^2-mx+m}\) có đúng một tiệm cận đứng A. m = 0 B. m \(\le\) 0 C. m \(\in\left\{0;4\right\}\) D. m \(\ge\) 4 Câu 2 : Tìm tập hợp tất cả các giá trị của tham số thực m để phương trình x3 + x2 + x = m(x2 +1)2 có nghiệm thuộc đoạn \(\left[0;1\right]\) A. m \(\ge1\) B. \(m\le1\) C. \(0\le m\le1\) D. \(0\le m\le\frac{3}{4}\) Câu...
Đọc tiếp

Câu 1 : Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = \(\frac{x-1}{x^2-mx+m}\) có đúng một tiệm cận đứng

A. m = 0

B. m \(\le\) 0

C. m \(\in\left\{0;4\right\}\)

D. m \(\ge\) 4

Câu 2 : Tìm tập hợp tất cả các giá trị của tham số thực m để phương trình x3 + x2 + x = m(x2 +1)2 có nghiệm thuộc đoạn \(\left[0;1\right]\)

A. m \(\ge1\)

B. \(m\le1\)

C. \(0\le m\le1\)

D. \(0\le m\le\frac{3}{4}\)

Câu 3 : Tìm giá trị lớn nhất M của hàm số y = cos2x + 4cosx + 1

A. M = 5

B. M = 4

C. M = 6

D. M = 7

Câu 4 : Cho hàm số y = \(\frac{x}{x-1}\) . Mệnh đề nào sau đây là đúng ?

A. Hàm số đồng biến trên khoảng (0;1)

B. Hàm số đồng biến trên R \(|\left\{1\right\}\)

C. Hàm số nghịch biến trên \(\left(-\infty;1\right)\cup\left(1;+\infty\right)\)

D. Hàm số nghịch biến trên khoảng \(\left(-\infty;1\right)\)\(\left(1;+\infty\right)\)

Câu 5 : Cho hàm số y = \(\frac{\left(m-1\right)sinx-2}{sinx-m}\) . Tìm tất cả các giá trị của tham số m để hàm số nghịch biến trên khoảng (0;\(\frac{\Pi}{2}\) )

A. \(m\in\left(-1;2\right)\)

B. m \(\in\left(-\infty;-1\right)\cup\left(2;+\infty\right)\)

C. m \(\in(-\infty;-1]\cup[2;+\infty)\)

D. m \(\in(-\infty;0]\cup[1;+\infty)\)

2
NV
16 tháng 10 2020

1.

Xét \(x^2-mx+m=0\) (1)

\(\Delta=m^2-4m\)

Hàm có đúng 1 tiệm cận đứng khi:

TH1: \(\Delta=0\Leftrightarrow\left[{}\begin{matrix}m=0\\m=4\end{matrix}\right.\)

Th2: (1) có 1 nghiệm \(x=1\)

\(\Leftrightarrow1-m+m=0\left(ktm\right)\)

Vậy \(m\in\left\{0;4\right\}\)

2.

\(\Leftrightarrow m=\frac{x^3+x^2+x}{\left(x^2+1\right)^2}\)

Xét hàm \(f\left(x\right)=\frac{x^3+x^2+x}{\left(x^2+1\right)^2}\Rightarrow f'\left(x\right)=\frac{\left(1-x\right)\left(x+1\right)^2}{\left(x^2+1\right)^3}\ge0;\forall x\in\left[0;1\right]\)

Hàm đồng biến trên [0;1] \(\Rightarrow f\left(0\right)\le m\le f\left(1\right)\Leftrightarrow0\le m\le\frac{3}{4}\)

NV
16 tháng 10 2020

3.

\(y'=-2sin2x-4sinx=0\Leftrightarrow sinx=0\)

\(\Rightarrow x=k\pi\)

\(y\left(0\right)=6\) ; \(y\left(\pi\right)=-2\)

\(\Rightarrow M=6\)

4.

\(y'=\frac{-1}{\left(x-1\right)^2}< 0\Rightarrow\) hàm số nghịch biến trên các khoảng \(\left(-\infty;1\right)\)\(\left(1;+\infty\right)\)

5.

\(y'=\frac{-m\left(m-1\right)+2}{\left(sinx-m\right)^2}.cosx< 0\Leftrightarrow-m^2+m+2< 0\)

\(\Leftrightarrow m\in\left(-\infty;-1\right)\cup\left(2;+\infty\right)\)

NV
30 tháng 8 2020

\(\lim\limits_{x\rightarrow\infty}\frac{2x-1}{\left(mx^2-2x+1\right)\left(4x^2+4mx+1\right)}=0\) nên ĐTHS luôn nhận \(y=0\) là tiệm cận ngang

Vậy ĐTHS có đúng 1 tiệm cận khi và chỉ khi ĐTHS không có tiệm cận đứng

- Với \(m=0\Rightarrow y=\frac{2x-1}{\left(-2x+1\right)\left(4x^2+1\right)}\) không có TCĐ (thỏa mãn)

- Với \(m\ne0\) ĐTHS không có tiệm cận đứng khi và chỉ khi:

\(\left\{{}\begin{matrix}mx^2-2x+1=0\\4x^2+4mx+1=0\end{matrix}\right.\) đều vô nghiệm

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta_1'=1-m< 0\\\Delta'_2=4m^2-4< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>1\\-1< m< 1\end{matrix}\right.\) (ko tồn tại m thỏa mãn)

Vậy \(m=0\)

Đáp án D

1 tập nghiệm S của bất pt \(4^{x+\frac{1}{2}}-5.2^x+2\le0\) A S=\(\left\{-1;1\right\}\) B=[-1;1] C S= \(\) ( \(-\infty;-1\)] \(\cup\) [\(1;+\infty\) ) D S=(-1;1) 2 Tập nghiệm của bất pt \(log_6\left[x.\left(5-x\right)\right]< 1\) A (0;2)\(\cup\) (3;5) B (2;3) C (0;5)\\(\left\{2;3\right\}\) D (0;3) \(\cup\) (3;5) 3 tập nghiệm của bất pt...
Đọc tiếp

1 tập nghiệm S của bất pt \(4^{x+\frac{1}{2}}-5.2^x+2\le0\)

A S=\(\left\{-1;1\right\}\) B=[-1;1] C S= \(\) ( \(-\infty;-1\)] \(\cup\) [\(1;+\infty\) ) D S=(-1;1)

2 Tập nghiệm của bất pt \(log_6\left[x.\left(5-x\right)\right]< 1\)

A (0;2)\(\cup\) (3;5) B (2;3) C (0;5)\\(\left\{2;3\right\}\) D (0;3) \(\cup\) (3;5)

3 tập nghiệm của bất pt \(\left(\sqrt{6}-\sqrt{5}\right)^{x-1}\ge\left(\sqrt{6}+\sqrt{5}\right)^{2x-5}\)

4 tập nghiệm của bất pt \(\left(\frac{1}{3}\right)^{\sqrt{x+2}}>3^{-x}\)

A (2;+\(\infty\)) B (1;2) C (1;2] D [2;\(+\infty\) )

5 Giai bất pt \(\left(\frac{3}{4}\right)^{2x-1}\le\left(\frac{4}{3}\right)^{-2x+x}\)

A X\(\ge\)1 B X<1 C X\(\le\) 1 D x>1

6 bất pt \(log_4\left(x+7\right)>log_2\left(x+1\right)\) có tập nghiệm là

A (5;\(+\infty\) ) B (-1;2) C (2;4) D (-3;2)

7 Tìm số nghiệm nguyên dương của bất pt \(\left(\frac{1}{5}\right)^{x^2-2x}\ge\frac{1}{125}\)

8 f(x)=\(x.e^{-3x}\) . tập nghiệm của bất pt \(f^,\) (x)>0

A (0;1/3) B (0;1) C \(\left(\frac{1}{3};+\infty\right)\) D \(\left(-\infty;\frac{1}{3}\right)\)

9 biết S =[a,b] là tập nghiệm của bất pt \(3.9^x-10.3^x+3\le0\) . Tìm T=b-a

10 TẬP nghiệm của bất pt \(log_{\frac{1}{3}}\frac{1-2x}{x}>0\)

11 có bao nhiêu nghiệm âm lớn hơn -2021 của bất pt \(\left(2-\sqrt{3}\right)^x>\left(2+\sqrt{3}\right)^{x+2}\)

A 2019 B 2020 C 2021 D 2018

12 Biết tập nghiệm S của bất pt \(log_{\frac{\pi}{6}}\left[log_3\left(x-2\right)\right]>0\) là khoảng (a,b) . Tính b-a

13 tập nghiệm của bất pt \(16^x-5.4^x+4\ge0\)

14 nếu \(log_ab=p\)\(log_aa^2.b^4\)bằng

A 4p+2 B 4p+2a c \(a^2+p^4\) D \(p^4+2a\)

15 cho a,b là số thực dương khác 1 thỏa \(log_{a^2}b+log_{b^2}a=1\) mệnh đề nào đúng

A a=\(\frac{1}{b}\) B a=b C a=\(\frac{1}{b^2}\) D a=\(b^2\)

16 đặt \(2^a=\)3 , khi đó \(log_3\sqrt[3]{16}\) bằng

6
NV
2 tháng 7 2020

14.

\(log_aa^2b^4=log_aa^2+log_ab^4=2+4log_ab=2+4p\)

15.

\(\frac{1}{2}log_ab+\frac{1}{2}log_ba=1\)

\(\Leftrightarrow log_ab+\frac{1}{log_ab}=2\)

\(\Leftrightarrow log_a^2b-2log_ab+1=0\)

\(\Leftrightarrow\left(log_ab-1\right)^2=0\)

\(\Rightarrow log_ab=1\Rightarrow a=b\)

16.

\(2^a=3\Rightarrow log_32^a=1\Rightarrow log_32=\frac{1}{a}\)

\(log_3\sqrt[3]{16}=log_32^{\frac{4}{3}}=\frac{4}{3}log_32=\frac{4}{3a}\)

NV
2 tháng 7 2020

11.

\(\Leftrightarrow1>\left(2+\sqrt{3}\right)^x\left(2+\sqrt{3}\right)^{x+2}\)

\(\Leftrightarrow\left(2+\sqrt{3}\right)^{2x+2}< 1\)

\(\Leftrightarrow2x+2< 0\Rightarrow x< -1\)

\(\Rightarrow\)\(-2+2020+1=2019\) nghiệm

12.

\(\Leftrightarrow\left\{{}\begin{matrix}x-2>0\\0< log_3\left(x-2\right)< 1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>2\\1< x-2< 3\end{matrix}\right.\)

\(\Rightarrow3< x< 5\Rightarrow b-a=2\)

13.

\(4^x=t>0\Rightarrow t^2-5t+4\ge0\)

\(\Rightarrow\left[{}\begin{matrix}t\le1\\t\ge4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}4^x\le1\\4^x\ge4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x\le0\\x\ge1\end{matrix}\right.\)

Câu 1 : Cho hàm số y = \(mx^4-x^2+1\) . Tập hợp các số thực m để hàm số đã cho có đúng một điểm cực trị là A. \(\left(0;+\infty\right)\) B. \((-\infty;0]\) C. \([0;+\infty)\) D. \(\left(-\infty;0\right)\) Câu 2 : Tập hợp tất cả các giá trị tham số thực m để đồ thị hàm số \(y=x^3+3mx^2+3\left(m^2-1\right)x+m^3\) có hai điểm cực trị nằm về hai phía trục hoành là (a;b) . Khi...
Đọc tiếp

Câu 1 : Cho hàm số y = \(mx^4-x^2+1\) . Tập hợp các số thực m để hàm số đã cho có đúng một điểm cực trị là

A. \(\left(0;+\infty\right)\) B. \((-\infty;0]\) C. \([0;+\infty)\) D. \(\left(-\infty;0\right)\)

Câu 2 : Tập hợp tất cả các giá trị tham số thực m để đồ thị hàm số \(y=x^3+3mx^2+3\left(m^2-1\right)x+m^3\) có hai điểm cực trị nằm về hai phía trục hoành là (a;b) . Khi đó giá trị a + 2b bằng

A. \(\frac{3}{2}\) B. \(\frac{4}{3}\) C. 1 D. \(\frac{2}{3}\)

Câu 3 : Có bao nhiêu giá trị nguyên dương của m để khoảng cách từ gốc tọa độ O đến đường thẳng đi qua 2 điểm cực trị của đồ thị hàm số y = \(x^3-3x+m\) nhỏ hơn hoặc bằng \(\sqrt{5}\)

A. 5 B. 2 C. 11 D. 4

Câu 4 : Gọi m là giá trị nhỏ nhất của hàm số y = \(x-1+\frac{4}{x-1}\) trên khoảng \(\left(1;+\infty\right)\) . Tìm m ?

A. m = 2 B. m = 5 C. m = 3 D. m = 4

Câu 5 : giá trị lớn nhất của hàm số \(y=\sqrt{-x^2+4x}\) trên khoảng (0;3) là :

A. 4 B. 2 C. 0 D. -2

Câu 6 : giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = \(\sqrt{x-2}+\sqrt{4-x}\) lần lượt là M và m . Chọn câu trả lời đúng

A. M = 4 , m = 2 B. M = 2 , m = 0 C. M = 3 , m = 2 D. M = 2 , m = \(\sqrt{2}\)

4
NV
16 tháng 10 2020

1.

Hàm trùng phương có đúng 1 cực trị khi:

TH1: \(a=m=0\)

TH2: \(ab=-m>0\Leftrightarrow m< 0\)

\(\Rightarrow m\le0\)

Đáp án B

NV
16 tháng 10 2020

2.

\(y'=3\left(x^2+2mx+m^2-1\right)=3\left(x+m+1\right)\left(x+m-1\right)\)

\(y'=0\Rightarrow\left[{}\begin{matrix}x=-m+1\\x=-m-1\end{matrix}\right.\)

Hàm số có 2 cực trị nằm về 2 phía trục hoành

\(\Leftrightarrow y'\left(-m+1\right).y'\left(-m-1\right)< 0\)

\(\Leftrightarrow\left(3m-2\right)\left(3m+2\right)< 0\Rightarrow-\frac{2}{3}< m< \frac{2}{3}\)

\(\Rightarrow a+2b=-\frac{2}{3}+2.\frac{2}{3}=\frac{2}{3}\)

NV
6 tháng 8 2020

1.

\(y'=3x^2-3=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

\(y\left(0\right)=5;\) \(y\left(1\right)=3;\) \(y\left(2\right)=7\)

\(\Rightarrow y_{min}=3\)

2.

\(y'=4x^3-8x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-\sqrt{2}\end{matrix}\right.\)

\(f\left(-2\right)=-3\) ; \(y\left(0\right)=-3\) ; \(y\left(-\sqrt{2}\right)=-7\) ; \(y\left(1\right)=-6\)

\(\Rightarrow y_{max}=-3\)

3.

\(y'=\frac{\left(2x+3\right)\left(x-1\right)-x^2-3x}{\left(x-1\right)^2}=\frac{x^2-2x-3}{\left(x-1\right)^2}=0\Rightarrow x=-1\)

\(y_{max}=y\left(-1\right)=1\)

4.

\(y'=\frac{2\left(x^2+2\right)-2x\left(2x+1\right)}{\left(x^2+2\right)^2}=\frac{-2x^2-2x+4}{\left(x^2+2\right)^2}=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

\(y\left(1\right)=1\) ; \(y\left(-2\right)=-\frac{1}{2}\Rightarrow y_{min}+y_{max}=-\frac{1}{2}+1=\frac{1}{2}\)

13 tháng 8 2020

câu 1 sao không ra đáp án nào vậy bạn , hình như bạn làm sai đâu đó rồi

NV
13 tháng 8 2020

Trời, đọc xong chỉ việc chọn đáp án mà ko biết chọn luôn?

Đáp án D chứ sao nữa

15 tháng 10 2020

2.

\(-x^3+3x^2=k\)

\(y=-x^3+3x^2\)

\(y'=-3x^2+6x\)

\(y'=0\Leftrightarrow x=0,x=2\)

Kẻ bảng biến thiên.

Đường thẳng y = k cắt đồ thị hàm số \(\Leftrightarrow0< k< 2\)

NV
15 tháng 10 2020

1.

ĐKXĐ: \(\left\{{}\begin{matrix}0\le x\le1\\x\ge2\end{matrix}\right.\)

\(\lim\limits_{x\rightarrow1^-}\frac{2x+3\sqrt{x}+1}{\sqrt{x^2-3x+2}}=\infty\Rightarrow x=1\) là TCĐ

\(\lim\limits_{x\rightarrow2^+}\frac{2x+3\sqrt{x}+1}{\sqrt{x^2-3x+2}}=\infty\Rightarrow x=2\) là TCĐ

\(\lim\limits_{x\rightarrow+\infty}\frac{2x+3\sqrt{x}+1}{\sqrt{x^2-3x+2}}=2\Rightarrow y=2\) là TCN

Vậy ĐTHS có 3 tiệm cận

3.

\(\lim\limits_{x\rightarrow0}y=\infty\Rightarrow x=0\) là TCĐ

\(\lim\limits_{x\rightarrow-\infty}\frac{\sqrt{x^2+2x+9}+\sqrt{1-x}}{x}=-1\Rightarrow y=-1\) là TCN

ĐTHS có 2 tiệm cận

4.

\(\lim\limits_{x\rightarrow-2^+}y=\infty\Rightarrow x=-2\) là TCĐ

ĐTHS có 1 TCĐ (\(x=-3\) ko thuộc TXĐ của hàm số nên đó ko phải là TCĐ)