K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2020

a) 2x-mx+2m-1=0

\(\Leftrightarrow x\left(2-m\right)=1-2m\left(1\right)\)

*Nếu \(m=2\)thay vào (1) ta được:

\(x\left(2-2\right)=1-2\cdot2\Leftrightarrow0x=-3\)

Với \(m=\frac{1}{2}\) ,pt trên vô nghiệm.

*Nếu \(m\ne2\)thì phương trình (1) có nghiệm  \(x=\frac{1-2m}{2-m}\)

Vậy  \(m\ne2\)thì phương trình có nghiệm duy nhất \(x=\frac{1-2m}{2-m}\)

b)c) mình biến đổi thôi, phần lập luận bạn tự lập luận nhé 

b)\(mx+4=2x+m^2\Leftrightarrow mx-2x=m^2-4\Leftrightarrow x\left(m-2\right)=\left(m-2\right)\left(m+2\right)\)

*Nếu \(m\ne2\).....pt có ngiệm x=m+2

*Nếu \(m=2\)....pt có vô số nghiệm

Vậy ....

c)\(\left(m^2-4\right)x+m-2=0\Leftrightarrow\left(m-2\right)\left(m+2\right)x=-\left(m-2\right)\)

Nếu \(m=2\).... pt có vô số nghiệm

Nếu \(m=-2\)..... pt vô nghiệm

Nếu \(m\ne\pm2\).... pt có nghiệm \(x=-m-2\)

Để nghiệm  \(x=-m-2\)dương \(\Leftrightarrow m+2< 0\Leftrightarrow m< -2\ne\pm2\)

Vậy m<-2

5 tháng 4 2020

Bài 1 :

a. Thay x = 3 vào phương trình đã cho, ta được:

12-2(1-3)2 = 4(3-m)-(3-3)(2.3+5)

12-8 = 12-4m

4m = 12-12+8

4m = 8

m = 2

Vậy với giá trị của m = 2 thì phương trình nhận x =3 là nghiệm

b.Thay x=1 vào phương trình đã cho, ta được :

(9.1+1)(1-2m) = (3.1+2)(3.1-5)

10(1-2m) = -10

10 -20m = -10

-20m = -10-10

-20m = -20

m = 1

Vậy với m = 1 thì phương trình nhận x = 1 là nghiệm

18 tháng 2 2017

<=> a) (2m)  khác -+3 hay m khác +-3/2

b) m=-3/2

18 tháng 2 2017

câu b bạn giải cụ thể giùm mik đc ko ạ please hihi

29 tháng 10 2020

Nhận xét: Phương trình bậc 3 luôn có ít nhất 1 nghiệm thực .

Để phương trình bậc 3 có đúng 2 nghiệm phân biệt thì phương trình bậc 3 phải tách được thành: 

( x - a) (x - b)2 với a khác b

Đối với bài trên chúng ta làm như sau: 

\(x^3-2mx^2+\left(m^2+5m\right)x-2m^2-2m-8=0\)

<=> \(\left(x^3-8\right)-\left(2mx^2-5mx+2m\right)+\left(m^2x-2m^2\right)=0\)

<=> \(\left(x-2\right)\left(x^2+2x+4\right)-m\left(2x-1\right)\left(x-2\right)+m^2\left(x-2\right)=0\)

<=> \(\left(x-2\right)\left(x^2+2x+4-2mx+m+m^2\right)=0\)

<=> \(\left(x-2\right)\left(x^2+2\left(1-m\right)x+4+m+m^2\right)=0\)

<=> \(\left(x-2\right)\left[\left(x^2+2\left(1-m\right)x+\left(1-m\right)^2\right)+4+m+m^2-\left(1-m\right)^2\right]=0\)

<=> \(\left(x-2\right)\left[\left(x+1-m\right)^2+4+m+m^2-\left(1-m\right)^2\right]=0\)

Phương trình ba đầu có 2 nghiệm phân biệt 

đk cần là: \(4+m+m^2-\left(1-m\right)^2=0\Leftrightarrow3+3m=0\Leftrightarrow m=-1\)

Khi đó phương trình có hai nghiệm 2 và -2 khác nhau

Vậy m = - 1 thỏa mãn

( Lớp 8 chưa học đen ta nên giải hơi lủng)

18 tháng 4 2020

Giải pt (1) :(x+3)(2x+1)=0

  =>{x+3=0   /     {2x+1=0

=> {x=-3   /      {x=-1/2 

Để hai pt tương đương thì pt (2) nhận giá trị x=-3 và x=-1/2 .

+)Thay x=-3 vào pt (2) :

     (m-4)(-3)^2 - 2(2m+9)(-3) -4 =0

=> (m-4)9 + 6(2m+9) - 4 = 0

=> 9m - 36+ 12m + 54 - 4= 0

=> 21m + 14 = 0

=> 21m = -14

=> m= -2/3

 Vậy ...

18 tháng 4 2020

+) Thay x= -1/2 vào pt (2) :

     (m-4)(-1/2)^2 - 2(2m+9)(-1/2) -4 =0

=>1/4(m-4) + 2m +9 - 4 = 0

=>1/4m -1 +2m +9 - 4 =0

=>9/4m +4 =0

=>9/4m = -4 

=>m =-16/9

Vậy ...