Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=-\left(x^2+10x-11\right)\)
\(=-\left(x^2+10x+25-36\right)\)
\(=-\left(x+5\right)^2+36< =36\)
Dấu '=' xảy ra khi x=-5
b: \(=-\left(x^2-6x+5\right)\)
\(=-\left(x^2-6x+9-4\right)\)
\(=-\left(x-3\right)^2+4< =4\)
Dấu '=' xảy ra khi x=3
c: \(=-2\left(x^2-x+\dfrac{5}{2}\right)\)
\(=-2\left(x^2-x+\dfrac{1}{4}+\dfrac{9}{4}\right)\)
\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}< =-\dfrac{9}{2}\)
Dấu '=' xảy ra khi x=1/2
d: \(=2x+8-x^2-4x\)
\(=-x^2-2x+8\)
\(=-\left(x^2+2x-8\right)\)
\(=-\left(x^2+2x+1-9\right)\)
\(=-\left(x+1\right)^2+9< =9\)
Dấu '=' xảy ra khi x=-1
\(•B=4x-9x^2=-\left(9x^2-4x\right)\\ =-\left(9x^2-3x.2.\dfrac{2}{3}+\dfrac{4}{9}\right)+\dfrac{4}{9}\\ =-\left(3x-\dfrac{2}{3}\right)^2+\dfrac{4}{9}\le\dfrac{4}{9}\\dấu\: "="\: xảy\: ra\: khi\: x=\dfrac{2}{9}\\ vậy\: MAX_B=\dfrac{4}{9}\: tại\: x=\dfrac{2}{9}\\ •C=5-2x-4x^2=-\left(4x^2+2x-5\right)\\ =-\left(4x^2+2.2x.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{21}{4}\\ =-\left(2x+\dfrac{1}{2}\right)^2+\dfrac{21}{4}\le\dfrac{21}{4}\\ dấu\: "="\: xảy\: ra\: khi\: x=-\dfrac{1}{4}\\ vậy\: MAX_C=\dfrac{21}{4}\: tại\: x=\dfrac{-1}{4}\\ •D=7+3x-x^2=-\left(x^2-3x-7\right)\\ =-\left(x^2-2.\dfrac{3}{2}x+\dfrac{9}{4}\right)+\dfrac{37}{4}\\ =-\left(x-\dfrac{3}{2}\right)^2+\dfrac{37}{4}\le\dfrac{37}{4}\\ dấu\: "="\: xảy\: ra\: khi\: x=\dfrac{3}{2}\\ vậy\: MAX_D=\dfrac{37}{4}\: tại\: x=\dfrac{3}{2}\)\(•E=1+x-x^2=-\left(x^2-x-1\right)\\ =-\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\\ dấu\:"="\:xảy\:ra\:khi\:x=\dfrac{1}{2}\\ vậy\:MAX_E=\dfrac{5}{4}\:tại\:x=\dfrac{1}{2}\\ •F=-5x-6x^2\\ -\dfrac{F}{6}=x^2+\dfrac{5}{6}x=x^2+2.x.\dfrac{5}{12}+\dfrac{25}{144}-\dfrac{25}{144}\\ -\dfrac{F}{6}=\left(x+\dfrac{5}{12}\right)^2-\dfrac{25}{144}\\ F=-6\left(x+\dfrac{5}{12}\right)^2+\dfrac{25}{24}\le\dfrac{25}{24}\\ dấu\: "="\: xảy\: ra\: khi\: x=\dfrac{-5}{12}\\ vậy\: MAX_F=\dfrac{25}{24}\: tại\: x=\dfrac{-5}{12}\)
\(B=4x-9x^2=-9\left(x^2-\dfrac{4}{9}x+\dfrac{4}{81}\right)+\dfrac{4}{9}\)
\(=-9\left(x-\dfrac{2}{9}\right)^2+\dfrac{4}{9}\le\dfrac{4}{9}\forall x\)
vậy Max B = \(\dfrac{4}{9}\) khi \(x-\dfrac{2}{9}=0\Rightarrow x=\dfrac{2}{9}\)
\(C=5-2x-4x^2=-4\left(x^2+\dfrac{1}{2}x+\dfrac{1}{16}\right)+\dfrac{21}{4}\)\(=-4\left(x+\dfrac{1}{4}\right)^2+\dfrac{21}{4}\le\dfrac{21}{4}\)
Vậy Max C = \(\dfrac{21}{4}\) khi \(x+\dfrac{1}{4}=0\Rightarrow x=-\dfrac{1}{4}\)
\(D=7+3x-x^2\)
\(=-\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{37}{4}\)
\(=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{37}{4}\le\dfrac{37}{4}\forall x\)
Vậy Max D = \(\dfrac{37}{4}\) khi \(x-\dfrac{3}{2}=0\Rightarrow x=\dfrac{3}{2}\)
\(E=1+x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{5}{4}\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\forall x\)
Vậy Max E = \(\dfrac{5}{4}\) khi \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)
\(F=-5x-6x^2=-6\left(x^2+\dfrac{5}{6}x+\dfrac{25}{144}\right)+\dfrac{25}{24}\)\(=-6\left(x+\dfrac{5}{12}\right)^2+\dfrac{25}{24}\le\dfrac{25}{24}\forall x\)
Vậy Max F = \(\dfrac{25}{24}\) khi \(x+\dfrac{5}{12}=0\Leftrightarrow x=-\dfrac{5}{12}\)
a) theo bài, ta có:
9x2 - 6x + 2 + y2
= (9x2 - 6x + y2) + 2
= (3x - y)2 + 2
vì (3x - y)2 \(\ge0\forall x,y\in R\)
=> (3x - y)2 + 2 \(\ge\) 2 \(\forall\)x, y \(\in\) R
=> (3x - y)2 + 2 > 0
hay 9x2 - 6x + 2 + y2 > 0
b) làm t.tự
c) theo bài ta có:
A= 2x2 + 4x - 1
= 2(x2 + 2x + 1) - 3
= 2(x + 1)2 - 3
vì 2(x + 1)2\(\ge\) 0 \(\forall x\in R\)
=>2(x + 1)2 - 3 \(\ge\) -3 \(\forall x\in R\)
=> GTNN của A bằng -3
c) 5x2 - 6xy + y2
= (9x2 - 6xy + y2)- 4x2
= (3x - y)2 - 4x2
= (3x - y - 4x)(3x - y + 4x)
= -(x + y)(7x - y)
mik chỉ làm đc đến đây thôi, vì mik lười bấm máy lắm, nhưng có j ủng hộ mik nha
Vì dài quá nên mình chỉ có thể trả lời được mấy câu thôi
Bài 1:
27x3 - 8 : (6x + 9x2 +4)
= (3x - 2) (9x2 + 6x + 4) : (9x2 + 6x + 4)
= 3x - 2
Bài 3:
a, 81x4 + 4 = (9x2)2 + 36x2 + 4 - 36x2
= (9x2 + 2)2 - (6x)2
= (9x2 + 6x + 2)(9x2 - 6x + 2)
b, x2 + 8x + 15 = x2 + 3x + 5x + 15
= x(x + 3) + 5(x + 3)
= (x + 3)(x + 5)
c, x2 - x - 12 = x2 + 3x - 4x - 12
= x(x + 3) - 4(x + 3)
= (x + 3) (x - 4)
Câu 1:
(27x3 - 8) : (6x + 9x2 + 4)
= (3x - 2)(9x2 + 6x + 4) : (6x + 9x2 + 4)
= 3x - 2
Câu 2:
a) (3x - 5)(2x+ 11) - (2x + 3)(3x + 7)
= 6x2 + 33x - 10x - 55 - 6x2 - 14x - 9x - 21
= -76
⇒ đccm
b) (2x + 3)(4x2 - 6x + 9) - 2(4x3 - 1)
= 8x3 + 27 - 8x3 + 2
= 29
⇒ đccm
Câu 3:
a) 81x4 + 4
= (9x2)2 + 22
= (9x2 + 2)2 - (6x)2
= (9x2 - 6x + 2)(9x2 + 6x + 2)
b) x2 + 8x + 15
= x2 + 3x + 5x + 15
= x(x + 3) + 5(x + 3)
= (x + 3)(x + 5)
c) x2 - x - 12
= x2 - 4x + 3x - 12
= x(x - 4) + 3(x - 4)
= (x - 4)(x + 3)
lê thị hương giang e ko nghĩ câu F đề sai đâu ạ! Chị check giúp xem em có tính sai hay ko nha!
2/ Ta có:
\(F=\left(x^2-2xy+y^2\right)+4\left(x-y\right)+4+x^2+8x+16-20\)
\(=\left(x-y+2\right)^2+\left(x+4\right)^2-20\ge-20\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=-4\\y=-2\end{matrix}\right.\)
\(M=4x^2-4x+1+4=\left(2x-1\right)^2+4\)
vì (2x-1)^2 >= 0 => M >= 4
dầu "=" xảy ra <=> 2x-1=0<=>x=1/2
tương tự nhé
2. b B=4(x^2+3/4x+5/4)
Bài 1:
a)M= 4x2-4x + 5
=4x2-4x+1+4
=(2x-1)2+4
Ta thấy:(2x-1)2+4\(\ge\)0+4=4
Dấu = khi x=1/2
Vậy.....
b)N= 9x2 + 5x
\(=9\left(x+\frac{5}{18}\right)^2-\frac{25}{36}\)
Ta thấy:\(9\left(x+\frac{5}{18}\right)^2-\frac{25}{36}\ge0-\frac{25}{36}=-\frac{25}{36}\)
Dấu = khi x=-5/18
Vậy...
Bài 2:
a)A= x2-6x + 12
=x2-6x+9+3
=(x-3)2+3 >0 với mọi x (Đpcm)
b)B= 4x2 -3x +5
\(=4\left(x-\frac{3}{8}\right)^2+\frac{71}{16}>0\)với mọi x (Đpcm)