Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng tính chất |A|+|B|>+|A+B|
y=|x-2|+|1-x|\(\ge\)|x-2+1-x|=|-1|=1
vậy gtri nhỏ nhất y=1 khi (x-2)(1-x)\(\ge0\)
<=> \(-1\le2\)
các câu sau tương tự nha
1) Áp dụng BĐT Bunhiacopski
P = \(6\sqrt{x-1}+8\sqrt{3-x}\le\sqrt{\left(6^2+8^2\right)\left(x-1+3-x\right)}=10\sqrt{2}\)
Vậy Min P = \(10\sqrt{2}\) khi x = 43/25
2) a) \(\Rightarrow A-5=y-2x=4y.\dfrac{1}{4}+\left(-6x\right).\dfrac{1}{3}\)
Áp dụng BĐT bunhiacopski
\(\Rightarrow\left(A-5\right)^2=\left(4y.\dfrac{1}{4}+\left(-6x\right).\dfrac{1}{3}\right)^2\) \(\le\left(16y^2+36x^2\right)\left(\dfrac{1}{16}+\dfrac{1}{9}\right)=\dfrac{25}{16}\)
\(\Rightarrow-\dfrac{5}{4}\le A-5\le\dfrac{5}{4}\Rightarrow\dfrac{15}{4}\le A\le\dfrac{25}{4}\)
...........
b) tương tự
f(x) = \(-2x^2+x+3\)
Vẽ BBT
Trong khoảng \(\left[-1;\frac{3}{2}\right]\)
Thấy GTLN tại x = 1/4 => y = 25/8
GTNN tại x = -1 => y = 0
\(f\left(x\right)=2x^2+x-6\)
Xét \(f\left(x\right)\) trên \(\left[0;\sqrt{3}\right]\)
\(-\frac{b}{2a}=-\frac{1}{4}\notin\left[0;\sqrt{3}\right]\)
\(f\left(0\right)=-6\) ; \(f\left(\sqrt{3}\right)=\sqrt{3}\)
\(\Rightarrow f\left(x\right)_{min}=f\left(0\right)=-6\)
\(f\left(x\right)_{max}=f\left(\sqrt{3}\right)=\sqrt{3}\)
Ta cần chứng minh
\(x+\frac{27}{\left(x+3\right)^3}\ge1\)
\(\Leftrightarrow x+\frac{27}{\left(x+3\right)^3}-1\ge0\)
\(\Leftrightarrow x^4+8x^3+18x^2\ge0\)
Theo đề bài ta có: \(x\ge0\Rightarrow\left\{\begin{matrix}x^4\ge0\\8x^3\ge0\\18x^2\ge0\end{matrix}\right.\)
\(\Rightarrow x^4+8x^3+18x^2\ge0\)
Vậy ta có điều phải chứng minh. Dấu = xảy ra khi x = 0
2/ \(P=x+\frac{2}{2x+1}\)
\(\Leftrightarrow2P=2x+\frac{4}{2x+1}=2x+1+\frac{4}{2x+1}-1\)
\(\ge4-1=3\)
\(\Rightarrow P\ge\frac{3}{2}\)
Vậy GTNN là \(\frac{3}{2}\) đạt được khi x = \(\frac{1}{2}\)