Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(2017-\left(\frac{1}{4}+\frac{2}{5}+\frac{3}{6}+\frac{4}{7}+...+\frac{2017}{2020}\right)\)
\(=\left(1+1+...+1\right)-\left(\frac{1}{4}+\frac{2}{5}+...+\frac{2017}{2020}\right)\)
\(=\left(1-\frac{1}{4}\right)+\left(1-\frac{2}{5}\right)+...+\left(1-\frac{2017}{2020}\right)\)
\(=\frac{3}{4}+\frac{3}{5}+....+\frac{3}{2020}\)
\(=\frac{3.5}{4.5}+\frac{3.5}{5.5}+\frac{3.5}{6.5}+...+\frac{3.5}{2020.5}\)
\(=3.5\left(\frac{1}{4.5}+\frac{1}{5.5}+\frac{1}{6.5}+...+\frac{1}{2020.5}\right)\)
\(=15.\left(\frac{1}{20}+\frac{1}{25}+\frac{1}{30}+...+\frac{1}{10100}\right)\)
Thế vào ta có
\(\frac{15.\left(\frac{1}{20}+\frac{1}{25}+\frac{1}{30}+...+\frac{1}{10100}\right)}{\frac{1}{20}+\frac{1}{25}+...+\frac{1}{10100}}=15\)
Được cập nhật 41 giây trước (17:23)
Ta có :
2017−(14 +25 +36 +47 +...+20172020 )
=(1+1+...+1)−(14 +25 +...+20172020 )
=(1−14 )+(1−25 )+...+(1−20172020 )
=34 +35 +....+32020
=3.54.5 +3.55.5 +3.56.5 +...+3.52020.5
=3.5(14.5 +15.5 +16.5 +...+12020.5 )
=15.(1
a/ \(\frac{-9}{10}.\frac{5}{14}+\frac{1}{10}.\left(\frac{-9}{2}\right)+\frac{1}{7}.\left(-\frac{9}{10}\right)\)
= \(-\frac{9}{10}.\left(\frac{5}{14}+\frac{1}{7}\right)+\frac{1}{10}.\left(-\frac{9}{2}\right)\)
= \(-\frac{9}{10}.\frac{1}{2}+\frac{1}{10}.\left(-\frac{9}{2}\right)\)
= \(\frac{-9}{20}+\left(-\frac{9}{20}\right)=\frac{-18}{20}=\frac{-9}{10}\)
b/ \(\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{6}+\frac{1}{11}\right).132\)
\(=\left(\frac{1}{2}.132\right)+\left(\frac{1}{3}.132\right)+\left(\frac{1}{4}.132\right)+\left(\frac{1}{6}.132\right)\)\(+\left(\frac{1}{11}.132\right)\)
\(=66+44+33+22+12=177\)
c/ \(-\frac{2}{3}.\left(\frac{8}{9}.\frac{8}{13}-\frac{8}{27}.\frac{8}{13}+\frac{4}{3}.\frac{22}{39}\right)\)
= \(-\frac{2}{3}.\left[\frac{8}{13}\left(\frac{8}{9}-\frac{8}{27}\right)+\frac{88}{117}\right]\)
= \(-\frac{2}{3}.\left(\frac{8}{13}.\frac{16}{27}+\frac{88}{117}\right)\)
= còn lại làm nốt nha! bận ròy
CÁC BN GIÚP MK VS NHA !!!!! MK DAG CẦN CỰC KỲ GẤP ĐÓ Ạ , AI GIẢI DC HẾT CHỖ NÀY SẼ DC K 3 CÁI ĐÓ Ạ !!!! CÁM ƠN MỌI NGƯỜI TRƯỚC Ạ ^^
\(a)\) Ta có :
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(A=1-\frac{1}{2^{100}}< 1\)
Vậy \(A< 1\)
Chúc bạn học tốt ~
Bài 1:
A = \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
= \(1-\frac{1}{50}=\frac{49}{50}\)
Bài 2:
Ta có: \(\frac{1}{1^2}=1;\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Rightarrow A< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1+1-\frac{1}{50}=2-\frac{1}{50}< 2\)
Vậy A < 2
Bài 3:
\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)
\(=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)
Bài 4:
\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
\(2S=6+3+\frac{3}{2}+...+\frac{3}{2^8}\)
\(2S-S=\left(6+3+\frac{3}{2}+...+\frac{3}{2^8}\right)-\left(3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\right)\)
\(S=6-\frac{3}{2^9}=6-\frac{3}{512}=\frac{3069}{512}\)
A=1-1/2+1/2-1/3+.............................1/49-1/50
A=1-1/50
A=49/50
Bài 1 mik học xong quên hết òi (mấy bài kia là hok biết luôn :V)
C\(\frac{1}{1}-\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}+\frac{1}{5.6}\)-\(\frac{1}{6.7}\)+\(\frac{1}{7.8}\)-\(\frac{1}{8.9}+\frac{1}{9.10}\)
c=\(\frac{1}{1}-\frac{1}{10}\)
c=\(\frac{9}{10}\)
còn a và b rễ lắm mình ko thích làm bài rễ đâu bạn cố chờ lời giải khác nhé!
\(1.\)\(M=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{42}\)
\(M=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{6.7}\)
\(M=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{6}-\frac{1}{7}\)
\(M=1-\frac{1}{7}=\frac{6}{7}\)
Mình làm câu 1 thoi nha!
1.
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)
=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{6}-\frac{1}{7}\)
=\(1-\frac{1}{7}\)
=\(\frac{6}{7}\)