K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2019

1.

Ta có: \(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c\)

\(\Rightarrow\frac{1}{2}a.\frac{1}{6}=\frac{2}{3}b.\frac{1}{6}=\frac{3}{4}c.\frac{1}{6}\)

\(\Rightarrow\frac{a}{12}=\frac{b}{9}=\frac{c}{8}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{12}=\frac{b}{9}=\frac{c}{8}=\frac{a-b}{12-9}=\frac{15}{3}=5\)

\(\Rightarrow\hept{\begin{cases}a=5.12=60\\b=5.9=45\\c=5.8=40\end{cases}}\)

Vậy \(\hept{\begin{cases}a=60\\b=45\\c=40\end{cases}}\)

23 tháng 7 2019

2.  Đặt \(a_1+a_2+...+a_n=d\)

ÁP dụng tính chất của dãy tỉ số bằng nhau ta được:

\(\frac{x_1}{a_1}=\frac{x_2}{a_2}=...=\frac{x_n}{a_n}=\frac{x_1+x_2+...+x_n}{a_1+a_2+...+a_n}=\frac{c}{d}\)

\(\Rightarrow x_1=\frac{c}{d}.a_1;x_2=\frac{c}{d}.a_2;....;x_n=\frac{c}{d}.a_n\)

AH
Akai Haruma
Giáo viên
25 tháng 4 2018

Lời giải:

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x_1}{a_1}=\frac{x_2}{a_2}=\frac{x_3}{a_3}=...=\frac{x_n}{a_n}=\frac{x_1+x_2+...+x_n}{a_1+a_2+...+a_{n}}\)

\(=\frac{c}{a_1+a_2+...+a_n}\)

Do đó:

\(\left\{\begin{matrix} x_1=\frac{ca_1}{a_1+a_2+....+a_n}\\ x_2=\frac{ca_2}{a_1+a_2+....+a_n}\\ x_3=\frac{ca_3}{a_1+a_2+...+a_n}\\ ...\\ x_n=\frac{ca_n}{a_1+a_2+..+a_n}\end{matrix}\right.\)

Tóm lại : \(x_i=\frac{ca_i}{a_1+a_2+...+a_n}\) với \(i=1,2,3,...,n\)

13 tháng 10 2017

\(\dfrac{x_1}{a_1}=\dfrac{x_2}{a_2}=...=\dfrac{x_n}{a_n}=\dfrac{x_1+x_2+...+x_{n-1}+x_n}{a_1+a_2+...+a_{n-1}+a_n}\)

\(=\dfrac{c}{a_1+a_2+...+a_n}\)

Suy ra:

\(x_1=\dfrac{a_1.c}{a_1+a_2+...+a_n}\)

\(x_2=\dfrac{a_2.c}{a_1+a_2+...+a_n}\)

.........................................

\(x_n=\dfrac{a_n.c}{a_1+a_2+...+a_n}\)

20 tháng 6 2017

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=.....=\frac{a_{n-1}}{a_n}=\frac{a_n}{a_1}\)

Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=.....=\frac{a_{n-1}}{a_n}=\frac{a_n}{a_1}=\frac{a_1+a_2+....+a_n}{a_2+a_3+....+a_n+a_1}=1\)

=> a1 = a2

     a2 = a3 

    .........

     an - 1 = an

     an = a1

=> a1 = a2 = a3 = ....... = an - 1 = an

MÀ \(a_1=-\sqrt{5}\)

=>  a1 = a2 = a3 = ....... = an - 1 = an = \(-\sqrt{5}\)

28 tháng 11 2016

b,ấp dụng tính chất dãy tỉ số = nhau ta có:

\(\frac{a1-1}{100}\) =.....=\(\frac{a100-100}{1}\) =\(\frac{\left(a1+...+a100\right)-\left(1+...+100\right)}{100+99+..+1}\) = \(\frac{5050}{5050}\)  = 1

từ \(\frac{a1-1}{100}\) = 1  suy ra :a1-1=100 =) a1=101

........................................................................

từ \(\frac{a100-100}{100}\) = 1 suy ra: a100-100=1 =) a100=101

vậy a1=a2=a3=...=a100=101

4 tháng 11 2018

Cho tam giác ABC vuông ở A(AB < AC), đường cao AH, biết AB = 6cm. Đường trung trực của BC cắt các đường thẳng AB, AC, BC theo thứ tự ở D, E và F biết DE = 5cm, EF = 4cm. Chứng minh:

a) Tam giác FEC đồng dạng với tam giác FBD

b) Tam giác AED đồng dạng với tam giác HAC

c) Tính BC, AH, AC

Cho tam giác ABC - Các bài toán hình lớp 7 về tam giác