Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x(3x^2 -5x + 3) = 6x^3 - 10x^2 + 6x
b) -2x(x^2 +5x-3) = -2x^3 - 10x^2 + 6x
c) 2 dấu trừ liền nhau??
bài 2:
a) \(\left(2x-1\right)\left(x^2+1\right)=2x^3-x^2+2x-1\)
b) \(-\left(5x-4\right)\left(2x+3\right)=-\left(10x^2-8x+15x-12\right)=-10x^2-7x+12\)
c) \(\left(2x-y\right)\left(4x^2-2xy+y^2\right)=8x^3-4x^2y-4x^2y+2xy^2+2xy^2-y^3=8x^3-8x^2y+2xy^2-y^3\)
d) \(\left(3x-4\right)\left(x+4\right)+\left(5-x\right)\left(2x^2+3x-1\right)=3x^2+8x-16+10x^2-2x^3+15x-3x^2-5+x=10x^2+24x-21\)
e) \(7x\left(x-4\right)-\left(7x+3\right)\left(2x^2-x+4\right)=7x^2-28x-\left(14x^3+6x^2-7x^2-3x+28x+12\right)=-14x^2+8x^2-53x-12\)
a) \(3\left(2x-1\right)-x\left(3x-2\right)=3x\left(1-x\right)+2\)
\(6x-3-3x^2+2x=3x-3x^2+2\)
\(6x-3x^2+2x-3x+3x^2=2+3\)
\(5x=5\)
\(x=1\)
b) \(2x^3\left(2x-3\right)-x^2\left(4x^2-6x+2\right)=0\)
\(4x^4-6x^3-4x^4+6x^2-2x^2=0\)
\(-2x^2=0\)
\(x^2=0\)
\(x=0\)
\(\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
\(=x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)
\(=x^5+x+1\)
1) a) \(\left(3x-1\right)\left(9x^2+3x+1\right)-4x\left(x-5\right)\)
\(=27x^3+9x^2+3x-9x^2-3x-1-4x^2+20x\)
\(=27x^3+\left(9x^2-9x^2-4x^2\right)+\left(3x-3x+20x\right)+\left(-1\right)\)
\(=27x^3-4x^2+20x-1\)
b)\(\left(7x+2\right)\left(3-4x\right)-\left(x+3\right)\left(x^2-3x+9\right)\)
\(=21x-28x^2+6-8x-x^3+3x^2-9x-3x^2+9x-27\)
\(=\left(21x-8x-9x+9x\right)+\left(-28x^2+3x^2-3x^2\right)\)\(+\left(6-27\right)\)\(+\left(-x^3\right)\)
\(=13x-28x^2-21-x^3\)
c)\(\left(4x+3\right)\left(4x-3\right)-\left(2-x\right)\left(4+2x+x^2\right)\)
\(=16x^2-12x+12x-9-8-4x-2x^2+4x+2x^2+x^3\)
\(=\left(16x^2-2x^2+2x^2\right)+\left(-12x+12x-4x+4x\right)\)\(+\left(-9-8\right)\)\(+x^3\)
\(=16x^2-17+x^3\)
d)\(\left(3x-8\right)\left(-5x+6\right)-\left(4x+1\right)\left(3x-2\right)\)
\(=-15x^2+18x+40x-48-12x^2+8x-3x+2\)
\(=\left(-15x^2-12x^2\right)+\left(18x+40x+8x-3x\right)\)\(+\left(-48+2\right)\)
\(=-27x^2+63x-46\)
e)\(\left(3x-6\right)4x-2x\left(3x+5\right)-4x^2\)
\(=12x^2-24x-6x^2-10x-4x^2\)
\(=\left(12x^2-6x^2-4x^2\right)+\left(-24x-10x\right)\)
\(=2x^2-34x\)
f)\(\left(5x-6\right)\left(6x-5\right)-x\left(3x+10\right)\)
\(=30x^2-25x-36x+30-3x^2-10x\)
\(=\left(30x^2-3x^2\right)+\left(-25x-36x-10x\right)+30\)
\(=27x^2-71x+30\)
2) a)\(x\left(x+3\right)-x^2=6\)
\(\Rightarrow x^2+3x-x^2=6\)
\(\Rightarrow\left(x^2-x^2\right)+3x=6\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
Vậy x=2
b) \(2x\left(x-5\right)+x\left(-2x-1\right)=6\)
\(\Rightarrow2x^2-10x-2x^2-x=6\)
\(\Rightarrow\left(2x^2-2x^2\right)+\left(-10x-x\right)=6\)
\(\Rightarrow-11x=6\)
\(\Rightarrow x=-\dfrac{6}{11}\)
\(\)Vậy \(x=-\dfrac{6}{11}\)
c) x(x+5)-(x+1)(x-2)=7
\(\Rightarrow x^2+5x-x^2+2x-x+2=7\)
\(\Rightarrow\left(x^2-x^2\right)+\left(5x+2x-x\right)=7-2\)
\(\Rightarrow6x=5\)
\(\Rightarrow x=\dfrac{5}{6}\)
Vậy x=\(\dfrac{5}{6}\)
d)\(\left(3x+4\right)\left(6x-3\right)-\left(2x+1\right)\left(9x-2\right)=10\)
\(\Rightarrow18x^2-9x+24x-12-18x^2+4x-9x+2=10\)
\(\Rightarrow\left(18x^2-18x^2\right)+\left(-9x+24x+4x-9x\right)+\left(-12+2\right)=10\)
\(\Rightarrow10x-10=10\)
\(\Rightarrow10x=20\)
\(\Rightarrow x=2\)
Vậy x=2
a) ( x + 2 )( 3 - 4x ) = x2 + 4x + 4
<=> ( x + 2 )( 3 - 4x ) = ( x + 2 )2
<=> 3 - 4x = x + 2
<=> -4x - x = 2 - 3
<=> -5x = -1
<=> x = \(\frac{1}{5}\)
b) x(2x - 7) - 4x + 14 = 0
<=> x(2x - 7) = 4x - 14
<=> x(2x - 7) = 2(2x - 7)
<=> x = 2
c) 3x - 15 = 2x(x - 5)
<=> 3(x - 5) = 2x(x - 5)
<=> 3 = 2x
<=> x = \(\frac{3}{2}\)
d) (2x + 1)(3x - 2) = (5x - 8)(2x + 1)
<=> 3x - 2 = 5x - 8
<=> 3x - 5x = -8 + 2
<=> -2x = -6
<=> x = 3
a) \(\frac{4x^2}{5y^2}.\frac{5y}{6x}.\frac{3y}{2x}=\frac{4x^2.5y.3y}{5y^2.6x.2x}=1\)
b)\(\frac{\left(x-2\right)\left(x+2\right)}{3\left(x+4\right)}.\frac{x+4}{2\left(x-2\right)}=\frac{x+2}{6}\)
c) \(\frac{\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)}.\frac{-3}{x-6}=\frac{-3\left(x+6\right)}{2\left(x+5\right)}\)
a, \(4\left(18-5x\right)-12\left(3x-7\right)=15\left(2x-16\right)-6\left(x+14\right)\)
\(\Rightarrow72-20x-36x+84=30x-240-6x-84\)
\(\Rightarrow-20x-36x-30x+6x=-240-84-72-84\)
\(\Rightarrow-80x=-480\Rightarrow x=6\)
b, \(5\left(3x+5\right)-4\left(2x-3\right)=5x+3\left(2x+12\right)+1\)
\(\Rightarrow15x+25-8x+12=5x+6x+36+1\)
\(\Rightarrow15x-8x-5x-6x=36+1-25-12\)
\(\Rightarrow-4x=0\Rightarrow x=0\)
c, \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)
\(\Rightarrow10x-16-12x+15=12x-16+11\)
\(\Rightarrow10x-12x-12x=-16+11+16-15\)
\(\Rightarrow-14x=-4\Rightarrow x=\dfrac{2}{7}\)
d, \(5x-3\left\{4x-2\left[4x-3\left(5x-2\right)\right]\right\}=182\)
\(\Rightarrow5x-3\left[4x-2\left(4x-15x+6\right)\right]=182\)
\(\Rightarrow5x-3\left(4x-8x+30x-12\right)=182\)
\(\Rightarrow5x-12x+24x-90x+36=182\)
\(\Rightarrow-73x=182-36\)
\(\Rightarrow-73x=146\Rightarrow x=-2\)
Chúc bạn học tốt!!!
\(a.\left(3x+2\right)\left(x^2-1\right)=\left(9x^2-4\right)\left(x+1\right)\\ \left(3x+2\right)\left(x^2-1\right)-\left(9x^2-4\right)\left(x+1\right)=0\\ \left(3x+2\right)\left(x+1\right)\left(x-1\right)-\left(3x-2\right)\left(3x+2\right)\left(x+1\right)=0\\ \left(3x+2\right)\left(x+1\right)\left[\left(x-1\right)-\left(3x-2\right)\right]=0\\ \left(3x+2\right)\left(x+1\right)\left(x-1-3x+2\right)=0\\ \left(3x+2\right)\left(x+1\right)\left(1-2x\right)=0\\ \left[{}\begin{matrix}3x+2=0\\x+1=0\\1-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-2}{3}\\x=-1\\x=\frac{1}{2}\end{matrix}\right.\)
\(b.x\left(x+3\right)\left(x-3\right)-\left(x+2\right)\left(x^2-2x+4\right)=0\\ x\left(x^2-9\right)-\left(x^3+8\right)=0\\ x^3-9x-x^3-8=0\\ -9x-8=0\\ -9x=8\\ x=\frac{-8}{9}\)
\(c.2x\left(x-3\right)+5\left(x-3\right)=0\\ \left(x-3\right)\left(2x+5\right)=0\\ \left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{-5}{2}\end{matrix}\right.\)
\(d.\left(3x-1\right)\left(x^2+2\right)=\left(3x-1\right)\left(7x-10\right)\\ \left(3x-1\right)\left(x^2+2\right)-\left(3x-1\right)\left(7x-10\right)=0\\ \left(3x-1\right)\left[\left(x^2+2\right)-\left(7x-10\right)\right]=0\\ \left(3x-1\right)\left(x^2+2-7x+10\right)=0\\ \left(3x-1\right)\left(x^2-7x+12\right)=0\\ \left(3x-1\right)\left(x^2-4x-3x+12\right)=0\\ \left(3x-1\right)\left[\left(x^2-4x\right)+\left(-3x+12\right)\right]=0\\ \left(3x-1\right)\left[x\left(x-4\right)-3\left(x-4\right)\right]=0\\ \left(3x-1\right)\left(x-4\right)\left(x-3\right)=0\\ \left[{}\begin{matrix}3x-1=0\\x-4=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=4\\x=3\end{matrix}\right.\)
\(e.\left(x+2\right)\left(3-4x\right)=x^2+4x+4\\ \left(x+2\right)\left(3-4x\right)=\left(x+2\right)^2\\ \left(x+2\right)\left(3-4x\right)-\left(x+2\right)^2=0\\ \left(x+2\right)\left[\left(3-4x\right)-\left(x+2\right)\right]=0\\ \left(x+2\right)\left(3-4x-x-2\right)=0\\ \left(x+2\right)\left(1-5x\right)=0\left[{}\begin{matrix}x+2=0\\1-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\frac{1}{5}\end{matrix}\right.\)
\(f.x\left(2x-7\right)-4x+14=0\\ x\left(2x-7\right)-2\left(2x-7\right)=0\\ \left(2x-7\right)\left(x-2\right)=0\\ \left[{}\begin{matrix}2x-7=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{2}\\x=2\end{matrix}\right.\)
\(g.3x-15=2x\left(x-5\right)\\ 3\left(x-5\right)=2x\left(x-5\right)\\ 3\left(x-5\right)-2x\left(x-5\right)=0\\ \left(x-5\right)\left(3-2x\right)=0\\ \left[{}\begin{matrix}x-5=0\\3-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\frac{3}{2}\end{matrix}\right.\)
\(h.\left(2x+1\right)\left(3x-2\right)=\left(5x-8\right)\left(2x+1\right)\\ \left(2x+1\right)\left(3x-2\right)-\left(5x-8\right)\left(2x+1\right)=0\\ \left(2x+1\right)\left[\left(3x-2\right)-\left(5x-8\right)\right]=0\\ \left(2x+1\right)\left(3x-2-5x+8\right)=0\\ \left(2x+1\right)\left(6-2x\right)=0\\ \left[{}\begin{matrix}2x+1=0\\6-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{2}\\x=3\end{matrix}\right.\)
a ) \(\left(3x^2-4x+5\right)\left(2x^2-4\right)-2x\left(3x^3-4x^2+8\right)\)
\(=\left(3x^2-4x+5\right).2x^2-4\left(3x^2-4x+5\right)-6x^4+8x^3-16x\)
\(=6x^4-8x^3+10x^2-12x^2+16x-20-6x^4+8x^3-16x\)
\(=\left(6x^4-6x^4\right)+\left(8x^3-8x^3\right)-\left(12x^2-10x^2\right)+\left(16x-16x\right)-20\)
\(=-2x^2-20\)
b ) \(\left(1-3x+x^2\right)\left(2-4x\right)+2x\left(2x^2+5\right)\)
\(=2\left(1-3x+x^2\right)-4x\left(1-3x+x^2\right)+4x^3+10x\)
\(=2-6x+2x^2-4x+12x^2-4x^3+4x^3+10x\)
\(=\left(4x^3-4x^3\right)+\left(12x^2+2x^2\right)+\left(10x-6x-4x\right)+2\)
\(=14x^2+2\)