Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1}{2^2}-1\right)\cdot\left(\frac{1}{3^2}-1\right)\cdot..\cdot\left(\frac{1}{10^2}-1\right)\)
\(=\left(\frac{1}{2}\cdot\frac{1}{2}-1\right)\cdot\left(\frac{1}{3}\cdot\frac{1}{3}-1\right)\cdot...\cdot\left(\frac{1}{10}\cdot\frac{1}{10}-1\right)\)
\(=\left(\frac{1}{4}-1\right)\cdot\left(\frac{1}{9}-1\right)\cdot...\cdot\left(\frac{1}{100}-1\right)\)
\(=\frac{-3}{4}\cdot\frac{-8}{9}\cdot...\cdot\frac{-99}{100}\)
\(=\frac{\left(-1\right).\left(-3\right)}{2.2}\cdot\frac{\left(-2\right).\left(-4\right)}{3.3}\cdot...\cdot\frac{\left(-9\right).\left(-11\right)}{10.10}\)
\(=\frac{\left(-1\right).\left(-2\right)....\left(-9\right)}{2.3....10}\cdot\frac{\left(-3\right).\left(-4\right)....\left(-11\right)}{2.3.....10}\)
\(=\frac{-1}{10}\cdot\frac{-11}{2}=\frac{-11}{20}\)
A=1+2+22+23+.....+22014
=>2A=2+22+23+.....+22015
=>2A-A=22015-1
=>A=22015-1
=>B-A=22015-(22015-1)=1
12+22+32+..........+20132+20142+20152 Gọi dãy trên là A
=1x1+2x2+3x3+.........+2013x2013+2014x2014+2015x2015
=1x(2-1)+2x(3-1)+3x(4-1)+........+2013x(2014-1)+2014x(2015-1)+2015x(2016-1)
=1x2-1x1+2x3-2x1+3x4-3x1+......+2013x2014-2013x1+2014x2015-2014x1+2015x2016-2015x1
=(1x2+2x3+3x4+.........+2013x2014+2014x2015+2015x2016)-(1+2+3+........+2013+2014+2015)
Gọi vế 1 của dãy là a
3xa=1x2x3+2x3x(4-1)+3x4x(5-2)+......+2013x2014x(2015-2012)+2014x2015x(2016-2013)+2015x2016x(2017-2014)
3xa=1x2x3+2x3x4-1x2x3+3x4x5-2x3x4+........+2013x2014x2015-2012x2013x2014+2014x2015x2016-2013x2014x2015+2015x2016x2017-2014x2015x2016
a=2015x2016x2017:3
a=2731179360
A=2731179360-(1+2+3+.....+2013+2014+2015)
A=2731179360-[2015x(2015+1):2]
A=2731179360-2031120
A=2729143240
Nhớ tick cho mình nha
M = 4 + 22 + 23 + 24 +...+22014 + 22015
=> 2M = 23 + 23 + 24 + 25 +...+22015 + 22016
=> 2M - M = 22016 + 23 - 4 - 22 = 22016
\(M=2^{2016}< 2^{2018}\)
\(M=4+2^2+2^3+2^4+....+2^{2014}+2^{2015}\)
\(M=2^2+2^2+2^3+2^4+....+2^{2014}+2^{2015}\)
\(\Rightarrow2M=2^3+2^3+2^4+2^5+...+2^{2015}+2^{2016}\)
\(\Rightarrow2M-M=\left(2^3+2^3+2^4+2^5+...+2^{2015}+2^{2016}\right)-\left(2^2+2^2+2^3+2^4+....+2^{2014}+2^{2015}\right)\)
\(M=2+2+2^{2016}-2=2^{2016}+2< 2^{2016}.2^2=2^{2018}\)
\(\Rightarrow M< 2^{2018}\)