Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 + 2 + 2^2 + 2^3 + ... + 2^100
2A = 2 + 2^2 + 2^3 + 2^4 + ... + 2^101
2A - A = A = ( 2 + 2^2 + 2^3 + 2^4 + ... + 2^101 ) - ( 1 + 2 + 2^2 + 2^3 + ... + 2^100 )
A = 2^101 - 1
Vì 2^101 - 1 < 2^101 nên A < B hay B > A
Ta có:
\(A=2^0+2^1+2^2+2^3+...+2^{100}\)
\(A=1+2+2^2+2^3+...+2^{100}\)
\(2A=2+2^2+2^3+2^4+...+2^{101}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{101}\right)-\left(1+2+2^2+2^3+...+2^{100}\right)\)
\(A=2^{101}-1\left(1\right)\)
\(B=2^{101}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\)suy ra:\(A< B\)
Vậy \(A< B\)
CHÚC BN HOK TỐT NHA
\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\)
\(3A=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}+\frac{101}{3^{100}}\)
\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}+\frac{101}{3^{100}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\right)\)
\(2A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}-\frac{101}{3^{101}}\)
\(2A=1+\left(\frac{1-\frac{1}{3^{100}}}{2}\right)-\frac{101}{3^{101}}< 1+\frac{1}{2}=\frac{3}{2}\)
\(\Rightarrow A< \frac{3}{2}:2=\frac{3}{4}\)( đpcm )
\(3A=\frac{1}{1}+\frac{2}{3}+\frac{3}{3^2}+....+\frac{101}{3^{100}}\)
\(3A-A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}\)
\(2A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}< 1+\frac{1}{3}+...+\frac{1}{3^{100}}< \frac{3}{2}\Rightarrow A< \frac{3}{4}\)
chủ yếu là cách làm thôi, có gì bạn tự tính
Đặt :
\(A=2^0+2^1+....+2^{101}\)
\(\Rightarrow2A=2+2^2+...+2^{102}\)
\(\Rightarrow2A-A=\left(2+2^2+...+2^{102}\right)-\left(2^0+2^1+....+2^{101}\right)\)
\(\Rightarrow A=2^{102}-1\)
Gọi biểu thức trên là A
Ta có:
A = 20 + 21 + .... + 2100 + 2101
\(\Rightarrow\) 2A = 2 . (20 + 21 + .... + 2100 + 2101)
\(\Rightarrow\) 2A = 2 + 22 + .... + 2101 + 2102
\(\Rightarrow\) 2A - A = (2 + 22 + .... + 2101 + 2102) - (20 + 21 + .... + 2100 + 2101)
\(\Rightarrow\) A = 2102 - 1
Đặt A = 21 + 22 + ... + 2100 - 2101
2A = 22 + 23 + ... + 2101 - 2102
2A - A = 22 + 23 + ... + 2101 - 2102 - 21 - 22 - ... - 2100 + 2101
A = 2101 - 2 102 + 2101 - 2
= 2102 - 2102 - 2 = - 2
\(A=1+2^1+2^2+.....+2^{101}\)
\(\Rightarrow2A=2\left(1+2^1+2^2+.....+2^{101}\right)=2+2^2+2^3+....+2^{102}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+.....+2^{102}\right)-\left(1+2+2^2+......+2^{101}\right)\)
\(\Rightarrow A=2^{102}-1\)
Vậy A chia hết cho 3 , 7 , 21