K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2020

Theo đề bài ta có :

\(F\left(x\right)=\left(x-1\right)\cdot Q\left(x\right)-4\) (1)

\(F\left(x\right)=\left(x+2\right)\cdot R\left(x\right)+5\) (2)

Thay \(x=1\) vào (1) ta có :

\(F\left(1\right)=-4\)

\(\Leftrightarrow1+a+b+c=-4\)

\(\Leftrightarrow a+b+c=-5\)

Thay \(x=-2\) vào (2) ta có :

\(F\left(-2\right)=5\)

\(\Leftrightarrow-8+4a-2b+c=5\)

\(\Leftrightarrow4a-2b+c=13\)

Do đó ta có : \(\hept{\begin{cases}a+b+c=-4\\4a-2b+c=13\end{cases}}\)

....

NV
4 tháng 5 2020

\(2x^4-x^3-2x^2-x+2=0\)

\(\Leftrightarrow2x^4-4x^3+2x^2+3x^3-6x^2+3x-4+2x^2-4x+2=0\)

\(\Leftrightarrow2x^2\left(x^2-2x+1\right)+3x\left(x^2-2x+1\right)+2\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow\left(2x^2+3x+2\right)\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x^2+3x=2=0\left(vn\right)\\x^2-2x+1=0\Rightarrow x=1\end{matrix}\right.\)

Bạn tự thay \(x=1\) vào tính A

17 tháng 6 2018

2:

a) Cách 1:

S = 2 + 22 + 23 + 24 + ... + 22018

2S = 22 + 23 + 24 + 25 + ... + 22019

Suy ra: S = 22019 - 2

Cách 2:

S = 2 + 22 + 23 + 24 + ... + 22018

= 111...1(2) (2019 chữ số 1)

7 tháng 3 2021

Ta có x = 2020

=> x + 1 = 2021

A = x2021 - 2021x2020 + .... + 2021x - 2021

= x2021 - (x + 1)x2020 + .... + (x + 1)x - (x + 1)

= x2021 - x2021 - x2020 + .... + x2 + x - x + 1

= 1

Vậy A = 1

7 tháng 3 2021

Ta có : \(x=2020\Rightarrow x+1=2021\)

\(A=x^{2021}-\left(x+1\right)x^{2020}+\left(x+1\right)x^{2019}-\left(x+1\right)x^{2018}+...-\left(x+1\right)x^2+\left(x+1\right)x-2021\)

= x2021 - x2021 - x2020  + x2020 + x2019 - x2019 - x2018 + ... - x3 - x2 + x+ x - 2021 = x - 2021 

mà x = 2020 hay 2020 - 2021 = -1 

Vậy với x = 2020 thì A = -1

21 tháng 8 2020

Đặt :

\(H=1^2-2^2+3^2-4^2+5^2-6^2+......+2019^2-2020^2\)

\(=\left(1^2-2^2\right)+\left(3^2-4^2\right)+.\left(5^2-6^2\right)+...+\left(2019^2-2020^2\right)\) (Có 1010 nhóm)

\(=\left(1-2\right)\left(1+2\right)+\left(3-4\right)\left(3+4\right)+....+\left(2019-2020\right)\left(2019+2020\right)\)

\(=-3-7-11-......-4039\)

\(=-\left(3+7+11+4039\right)\)

\(=-\frac{\left(4039+3\right).1010}{2}\)

\(=-2041210\)

Vậy....

21 tháng 8 2020

Ta có : 12 - 22 + 32 - 42 +  52 - 62 + .... + 20192 - 20202

= (1 - 2)(1 + 2) + (3 - 4)(3 + 4) + (5 - 6)(5 + 6) + .... + (2019 - 2020)(2020 + 2019)

= -3 - 7 - 11 - ...  - 4039

= - (3 + 7 + 11 + ... + 4039)

= - 1010.(4039 + 3) : 2 

= - 1010.2021

= -2041210

21 tháng 8 2020

\(=\left(2^2-1\right)+\left(4^2-3^2\right)+\left(6^2-5^2\right)+...+\left(2020^2-2019^2\right)=\)

\(=\left(2-1\right)\left(2+1\right)+\left(4-3\right)\left(4+3\right)+...+\left(2020-2019\right)\left(2020+2019\right)=\)

\(=3+7+11+....+4039=\frac{1009\left(4039+3\right)}{2}=\)

29 tháng 6 2019

D ez nhất :v

\(D=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+5\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+5\ge5\)

Đẳng thức xảy ra khi x = 1 và y = -2

29 tháng 6 2019

\(A=\left[\left(x^2-2xy+y^2\right)+4\left(x-y\right)+4\right]+\left(y^2-2y+1\right)+2020\)

\(=\left[\left(x-y\right)^2+2\left(x-y\right).2+2^2\right]+\left(y-1\right)^2+2020\)

\(=\left(x-y+2\right)^2+\left(y-1\right)^2+2020\ge2020\)

Dấu "=" xảy ra khi y = 1 và x - y + 2 = 0 tức là x = y - 2 = -1