Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ê thông ơi hình như đề là cm ko cp chứ , cậu xem lại đề đi nha
1/ Xét \(\left(n^{1010}\right)^2=n^{2020}< n^{2020}+1=\left(n^{1010}+1\right)^2-2n^{1010}< \left(n^{1010}+1\right)^2\)
Vì \(n^{2020}+1\)nằm ở giữa 2 số chính phương liên tiếp là \(\left(n^{1010}\right)^2\)và \(\left(n^{1010}+1\right)^2\)nên không thể là số chính phương.
2/ Mình xin sửa đề là 1 tí đó là tìm \(n\inℤ\)để A là số chính phương nha bạn, vì A hoàn toàn có thể là số chính phương
\(A>n^4+2n^3+n^2=\left(n^2+n\right)^2,\forall n\inℤ\)
\(A< n^4+n^2+9+2n^3+6n^2+6n=\left(n^2+n+3\right)^2,\forall n\inℤ\)
Vì A bị kẹp giữa 2 số chính phương là \(\left(n^2+n\right)^2,\left(n^2+n+3\right)^2\)nên A là số chính phương khi và chỉ khi:
+) \(A=\left(n^2+n+1\right)^2\Rightarrow n^4+2n^3+2n^2+n+7=n^4+n^2+1+2n^3+2n^2+2n\)
\(\Leftrightarrow n^2+n-6=0\Leftrightarrow\orbr{\begin{cases}n=2\\n=-3\end{cases}}\)
+) \(A=\left(n^2+n+2\right)^2\Rightarrow n^4+2n^3+2n^2+n+7=n^4+n^2+4+2n^3+4n^2+4n\)
\(\Leftrightarrow3n^2+3n-3=0\Leftrightarrow x=\frac{-1\pm\sqrt{5}}{2}\notinℤ\)---> Với n=-3;2 thì A là số chính phương.
3/ Bằng phản chứng giả sử \(n^3+1\)là số chính phương:
---> Đặt: \(n^3+1=k^2,k\inℕ^∗\Rightarrow n^3=k^2-1=\left(k-1\right)\left(k+1\right)\)
Vì n lẻ nên (k-1) và (k+1) cùng lẻ ---> 2 số lẻ liên tiếp luôn nguyên tố cùng nhau
Lúc này (k-1) và (k+1) phải là lập phương của 2 số tự nhiên khác nhau
---> Đặt: \(\hept{\begin{cases}k-1=a^3\\k+1=b^3\end{cases},a,b\inℕ^∗}\)
Vì \(k+1>k-1\Rightarrow b^3>a^3\Rightarrow b>a\)---> Đặt \(b=a+c,c\ge1\)
Có \(b^3-a^3=\left(k+1\right)-\left(k-1\right)\Leftrightarrow\left(a+c\right)^3-a^3=2\Leftrightarrow3ca^2+3ac^2+c^3=2\)
-----> Quá vô lí vì \(a,c\ge1\Rightarrow3ca^2+3ac^2+c^3\ge7\)
Vậy mâu thuẫn giả thiết ---> \(n^3+1\)không thể là số chính phương với n lẻ.
1. a) Đặt \(A=1+19^{19}+93^{199}+1993^{1994}\)
\(\Rightarrow A=1+\left(19\right)^{19}+\left(93^2\right)^{99}.93+\left(1993^2\right)^{997}\)
\(=1+\left(...9\right)+\left(...9\right).93+\left(...9\right)\)
\(=...26\)
Nếu là số chính phương có chữ số tận cùng là 6 thì hàng chục là số lẻ.
Ở đây ta thấy hàng chục là số 2 ( số chẵn )
\(\Rightarrow\) \(1+19^{19}+93^{199}+1993^{1994}\) không phải là số chính phương.
b) \((2k+1).2k.(2k-1) \)
\((2k+1)^2 +4k^2 +(2k-1)^2\)
\(=4k^2 +4k +1 +4k^2 +4k^2 -4k +1\)
\(=12k^2+2\) chia hết cho 2 không chia hết cho 4.
\(\Rightarrow\) Tổng của 3 số chính phương liên tiếp không phải là số chính phương.
2. Câu hỏi của Trần Nhật Ái - Toán lớp 8
thì ra là bn có người nhwof nhưng máu iếng nổi lên h có bn làm khỏe
Ta có: \(1992^2\) chia 3 dư 0,1
1993^2..........................
1994^2...........................
\(\Rightarrow N=1992^2+1993^2+1994^2\) chia 3 dư 0
(đpcm)
a)M có
1992 chia hết cho 3=> 19922 chia 3 dư 0
1993 ko chia hết cho 3 => 19932 chia 3 dư 1
1994 ko chia hết cho 3 => 19942 chia 3 dư 1
M chia 3 dư 2 => ko là số chính phương
b) tương tự xét số dư của từng hạng tử trong N với 4
thấy N chia 4 dư 2=> ko là số CP
hỏi làm chi mò , tự làm cũng ra mà .
hỏi cho chắc mà