Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)....\left(1-\frac{1}{x^2}\right)=\frac{1007}{2012}\)
\(\Rightarrow\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{\left(x^2-1\right)}{x^2}=\frac{1007}{2012}\)
\(\Rightarrow\frac{1.3.2.4.3.5...\left(x-1\right)\left(x+1\right)}{\left(2.3.4..x\right)^2}=\frac{1007}{2012}\)
\(\Rightarrow\frac{\left[2.3.4...\left(x-1\right)\right].\left[3.4.5...\left(x+1\right)\right]}{\left(2.3.4....x\right)\left(2.3.4....x\right)}=\frac{1007}{2012}\)
\(\Rightarrow\frac{\left(x+1\right)}{2x}=\frac{1007}{2012}\)
\(\Rightarrow2002.\left(x+1\right)=1007.2x\)
\(\Rightarrow2012x+2012=2014x\)
\(\Rightarrow2x=2012\)
\(\Rightarrow x=1006\)
Vậy x = 1006
Đặt\(A=3^{2012}-3^{2011}+3^{2010}-3^{2009}+...+3^2-3+1\)
\(\Rightarrow3A=3^{2013}-3^{2012}+3^{2011}-3^{2010}+...+3^3-3^2+3\)
\(\Rightarrow A+3A=\left(3^{2012}-3^{2011}+3^{2010}-3^{2009}+...+3^2-3+1\right)+\left(3^{2013}-3^{2012}+3^{2011}-3^{2010}+...+3^3-3^2+3\right)\)\(\Rightarrow4A=3^{2013}+1>1\Rightarrow A>\frac{1}{4}\)
Vậy \(A>\frac{1}{4}\)
=(1+4+4^2)+(4^3+4^4+4^5)+......+(4^2010+4^2011+4^2012)
=21+4^3.(1+4+4^2)+..........+4^2010.(1+4+4^2)
=21+4^3.21+...........+4^2010.21
=21.(1+4^3+....+4^2010) chia hết cho 21
Ta có \(1+4+4^2+4^3+....+4^{2012}\)
\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^6\right)+....+\left(4^{2010}+4^{2011}+4^{2012}\right)\)
\(=1.\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+....+4^{2010}.\left(1+4+4^2\right)\)
\(=\left(1+4+4^2\right).\left(1+4^3+....+4^{2010}\right)\)
\(=21.\left(1+4^3+...+4^{2010}\right)⋮21\)
Vậy biểu thức chia hết cho 21
gọi biểu thức 2^4+2^8+....+2^2016 là A ta có
A=2^4+2^8+.....+2^2016
8A=2^4+2^8+.....+2^2010
8A-A=2-2^2010
7A=1+2-2^2010
Đề bài yêu cầu gì?