Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(33^{44}=\left(33^4\right)^{11}\)
\(44^{33}=\left(44^3\right)^{11}\)
mà \(33^4>44^3\)
nên \(33^{44}>44^{33}\)
a) \(\sqrt{3}+5=\sqrt{3}+\sqrt{25}>\sqrt{2}+\sqrt{11}\)
b) \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)
c) \(4+\sqrt{33}=\sqrt{16}+\sqrt{33}>\sqrt{29}+\sqrt{14}\)
d) \(\sqrt{48}+\sqrt{120}< \sqrt{49}+\sqrt{121}=7+11=18\)
a/ \(3^{150}=\left(3^2\right)^{75}=9^{75}\)
\(2^{225}=\left(2^3\right)^{75}=8^{75}\)
\(9^{75}>8^{75}\Rightarrow3^{150}>2^{225}\)
b/
\(20162016^{10}=\left(2016.10001\right)^{10}=2016^{10}10001^{10}\)
\(2016^{20}=2016^{10}.2016^{10}\)
\(10001^{10}>2016^{10}\Rightarrow2016^{10}.10001^{10}>2016^{10}.2016^{10}\Rightarrow20162016^{10}>2016^{20}\)
c/ \(\frac{222^{333}}{333^{222}}=\frac{\left(222^3\right)^{111}}{\left(333^2\right)^{111}}=\frac{\left(2^3.111^3\right)^{111}}{\left(3^2.111^2\right)^{111}}=\left(\frac{8.111}{9}\right)^{111}\)
\(\frac{888}{9}>1\Rightarrow\left(\frac{888}{9}\right)^{111}>1\Rightarrow222^{333}>333^{222}\)
a) Ta có: 3^150 = 3^2.75 = (3^2)^75 = 9^75
2^225 = 2^3.75 = (2^3)^75 = 8^75
Vì 9 > 8 nên 9^75 > 8^75
Vậy 3^150 > 2^225
b) Ta có: 2016^20 = 2016^10+10 = 2016^10 . 2016^10
20162016^10 = (10001 . 2016)^10 = 10001^10 . 2016^10
Vì 2016^10 < 10001^10 nên 2016^10 . 2016^10 < 10001^10 . 2016^10
Vậy 2016^20 < 20162016^10
ĐẦU TIÊN TA LÀM NHƯ THẾ NÀY:333444=111444.3444
222^555=111^555.2^555
SAU ĐÓ TA TÁCH:3^444=(3^4)^111=81^111 VÀ 2^555=(2^5)^111=32^111
VÌ 81>32=>3^444>2^555<=>333^444>222^555 (LƯU Ý GIÙM MÌNH LÀ DẤU ^ LÀ LUỸ THỪA NHA)
?
a: \(33^{44}=1185921^{11}\)
\(44^{33}=85184^{11}\)
mà 1185921>85184
nên \(33^{44}>44^{33}\)