Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{\frac{1}{2020}+\frac{2}{2019}+\frac{3}{2018}+...+\frac{2019}{2}+\frac{2020}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}\)
\(A=\frac{1+\left(\frac{1}{2020}+1\right)+\left(\frac{2}{2019}+1\right)+\left(\frac{3}{2018}+1\right)+...+\left(\frac{2019}{2}+1\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}\)
\(A=\frac{\frac{2021}{2021}+\frac{2021}{2020}+\frac{2021}{2019}+...+\frac{2021}{2}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}\)
\(A=\frac{2021\left(\frac{1}{2021}+\frac{1}{2020}+\frac{1}{2019}+...+\frac{1}{2}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2021}}=2021\)
1:
I2x+3I = 5
=> 2x+3 = 5 hoặc 2x+3 = -5
=> 2x = 5 - 3 hoặc 2x = -5 - 3
=> 2x = 2 hoặc 2x = -8
=> x = 2 hoặc x = -4
2:
B = 1/2.2/3.3/4.4/5.....27/28
= 1.2.3.4.5.6...27/2.3.4.5.6...28
= 1/28
3:
2A = 2(1+1/2+1/2^2+1/2^3+1/2^4+...+1/2^2015) = 2+1+1/2+1/2^2+1/2^3+...+1/2^2014
=> 2A-A = ( 2+1+1/2+1/2^2+1/2^3+...+1/2^2014)-(1+1/2+1/2^2+1/2^3+...+1/2^2015)
=> A = 2-1/2^2015
HD: Vũ Phương Vy em chỉ cần đặt ts c rồi rút gọn
ko chép lại đề nha
=\(A=\frac{2\left(1-\frac{2}{19}+\frac{2}{23}\right)-\frac{1}{1010}}{3\left(1-\frac{1}{19}+\frac{1}{23}-\frac{1}{2020}\right)}\)\(.\frac{4\left(1-\frac{1}{29}+\frac{1}{41}\right)-\frac{1}{505}}{5\left(1-\frac{1}{29}+\frac{1}{41}\right)-\frac{1}{404}}\)
rồi em chỉ cần rút gọn tiếp
p/s đến đây thấy đề kì kì sao đó
em chek lại đề đc k
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{20}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{19}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{19}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{20}}\right)\)
\(A=1-\frac{1}{2^{20}}\)
\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{21}}\)
\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{20}}\)
\(3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{20}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{21}}\right)\)
\(2B=1-\frac{1}{3^{21}}\)
\(B=\frac{1-\frac{1}{3^{21}}}{2}\)
\(C=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{19\cdot20\cdot21}\)
\(C=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{19\cdot20\cdot21}\right)\)
\(C=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{19\cdot20}-\frac{1}{20\cdot21}\right)\)
\(C=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{20\cdot21}\right)\)
\(C=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{420}\right)\)
\(C=\frac{1}{2}\cdot\frac{209}{420}\)
\(C=\frac{209}{480}\)
Giải:
C=1/2 + 1/2^2 + 1/2^3 + ... + 1/2^2020
2C=1 + 1/2 + 1/2^2 + ... +1/2^2019
2C-C=(1+1/2+1/2^2+...+1/2^2019)-(1/2+1/2^2+1/2^3+...+1/2^2020)
C=1-1/2^2020
Chúc bạn học tốt!
1. \(S=1+3+3^2+3^3+........+3^{2019}+3^{2020}\)
\(\Rightarrow3S=3+3^2+3^3+3^4+........+3^{2020}+3^{2021}\)
\(\Rightarrow3S-S=3^{2021}-1\)
\(\Rightarrow2S=3^{2021}-1\)
\(\Rightarrow S=\frac{3^{2021}-1}{2}\)
2. \(\left(3x-2\right)^3=64\)
\(\Leftrightarrow\left(3x-2\right)^3=4^3\)
\(\Leftrightarrow3x-2=4\)
\(\Leftrightarrow3x=6\)
\(\Leftrightarrow x=2\)
Vậy \(x=2\)
[3x-2]^3=64
Ta có:64=4^3
Suy ra:3x-2=4
3x =4+2
3x=6
x=6:3
x=2
\(C=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}\\ 2C=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2019}}\\ 2C-C=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2019}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}\right)\\ C=1-\dfrac{1}{2^{2020}}=\dfrac{2^{2020}-1}{2^{2020}}\)