Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
a) đk: x khác 1; \(\dfrac{3}{2}\)
\(P=\left[\dfrac{2x}{\left(2x-3\right)\left(x-1\right)}-\dfrac{5}{2x-3}\right]:\left(\dfrac{3-3x+2}{1-x}\right)\)
= \(\dfrac{2x-5\left(x-1\right)}{\left(2x-3\right)\left(x-1\right)}:\dfrac{5-3x}{1-x}\)
= \(\dfrac{-3x+5}{\left(2x-3\right)\left(x-1\right)}.\dfrac{1-x}{-3x+5}=\dfrac{-1}{2x-3}\)
b) Có \(\left|3x-2\right|+1=5\)
<=> \(\left|3x-2\right|=4\)
<=> \(\left[{}\begin{matrix}3x-2=4< =>x=2\left(Tm\right)\\3x-2=-4< =>x=\dfrac{-2}{3}\left(Tm\right)\end{matrix}\right.\)
TH1: Thay x = 2 vào P, ta có:
P = \(\dfrac{-1}{2.2-3}=-1\)
TH2: Thay x = \(\dfrac{-2}{3}\)vào P, ta có:
P = \(\dfrac{-1}{2.\dfrac{-2}{3}-3}=\dfrac{3}{13}\)
c) Để P > 0
<=> \(\dfrac{-1}{2x-3}>0\)
<=> 2x - 3 <0
<=> x < \(\dfrac{3}{2}\) ( x khác 1)
d) P = \(\dfrac{1}{6-x^2}\)
<=> \(\dfrac{-1}{2x-3}=\dfrac{1}{6-x^2}\)
<=> \(\dfrac{-1}{2x-3}=\dfrac{-1}{x^2-6}\)
<=> 2x - 3 = x2 - 6
<=> x2 - 2x - 3 = 0
<=> (x-3)(x+1) = 0
<=> \(\left[{}\begin{matrix}x=-1\left(Tm\right)\\x=3\left(Tm\right)\end{matrix}\right.\)
\(\left(2x-1\right)\left(1+2x\right)-3\left(x-3\right)^2-\left(2+x\right)^2\)
\(=\left(2x-1\right)\left(2x+1\right)-3\left(x^2-6x+9\right)-\left(4+4x+x^2\right)\)
\(=4x^2-1-3x^2+18x-27-4-4x-x^2\)
\(=14x-32\)
Phần b ,c giải phương trình??
\(\left(2x-3\right)^2+\left(3-x\right)^2+2\left(3-x\right)\left(2x-3\right)=5\)
\(\Leftrightarrow\left(2x-3\right)\left(2x-3+2\left(3-x\right)\right)+\left(3-x\right)^2=5\)
\(\Leftrightarrow\left(2x-3\right)\left(2x-3+6-2x\right)+\left(3-x\right)^2=5\)
\(\Leftrightarrow3\left(2x-3\right)+9-6x+x^2=5\)
\(\Leftrightarrow6x-9+9-6x+x^2=5\)
\(\Leftrightarrow x^2=5\)
\(\Leftrightarrow x=\pm\sqrt{5}\)
\(\left(x+5\right)\left(5-x\right)+\left(2x-1\right)^2-\left(3x-1\right)\left(x+2\right)-7=0\)
\(\Leftrightarrow\left(5-x\right)\left(5-x\right)+4x^2-4x+1-\left(3x^2+6x-x-2\right)-7=0\)
\(\Leftrightarrow25-x^2+4x^2-4x+1-3x^2-6x+x+2-7=0\)
\(\Leftrightarrow21-9x=0\)
\(\Leftrightarrow9x=21\)
\(\Leftrightarrow x=3\)
a) \(\left(x-3\right)\left(3x+2\right)-3x\left(x-5\right)+3\)
\(=x.\left(3x+2\right)-3.\left(3x+2\right)-3x\left(x-5\right)+3\)
\(=x.3x+x.2-3.3x-3.2-3x.x+3x.5+3\)
\(=3x^2+2x-9x-6-3x^2+15x+3\)
\(=8x-3\)
b )
\(2x\left(x-3\right)-\left(x-5\right)\left(2x-1\right)\)
\(2x.x-2x.3-x.\left(2x-1\right)-5.\left(2x-1\right)\)
\(2x.x-2x.3-x.2x+x.1-5.2x+5.x\)
\(2x^3-6x-2x^2+x-10x+5x\)
\(2x^3-15x-2x^2\)
a: Ta có: \(\left(x+5\right)^2-4x\left(2x+3\right)^2-\left(2x-1\right)\left(x+3\right)\left(x-3\right)\)
\(=x^2+10x+25-4x\left(4x^2+12x+9\right)-\left(2x-1\right)\left(x^2-9\right)\)
\(=x^2+10x+25-16x^3-48x^2-36x-2x^3+18x+x^2-9\)
\(=-18x^3-46x^2-8x+16\)
`Answer:`
`a)`
`A=5(x+1)^2-3(x-3)^2-4(x^2-4)`
`=>A=5(x^2+2x+1)-3(x^2-6x+9)-4x^2+16`
`=>A=5x^2+10x+5-3x^2+18x-27-4x^2+16`
`=>A=(5x^2-3x^2-4x^2)+(10x+18x)+(5-27+16)`
`=>A=-2x^2+28x-6`
`b)`
`B=5(x+1)^2-3(x-3)^2-4(x+2)(x-2)`
`=2x(3x+5)-3(3x+5)-2x(x^2-4x+4)-[(2x)^2-3^2]`
`=6x^2+10x-9x-15-2x^3+8x^2-8x-4x^2+9`
`=(6x^2-4x^2+8x^2)-2x^3+(10x-9x-8x)+(-15+9)`
Thay `x=-7` vào ta được:
`B=10(-7)^2-2(-7)^3-7(-7)-6`
`=>B=10.49-2(-343)+49-6`
`=>B=490+686+49-6`
`=>B=1219`
Bài 3:
=>(x-2)(3x-5)=0
=>x=5/3 hoặc x=2
Bài 2:
\(=\dfrac{2x^3+3x^2-2x-3+2}{2x+3}=x^2-1+\dfrac{2}{2x+3}\)