K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2016

Ta có:

a2017 + b2017 = a2017 + ab2016 + a2016b + b2017 - a2016b - ab2016

= a.(a2016 + b2016) + b.(b2016 + a2016) - ab.(a2015 - b2015)

= (a2016 + b2016).(a + b) - ab.(a2015 + b2015)

Chia cả 2 vế cho a2017 + b2017 = a2016 + b2016 = a2015 + b2015

=>  a + b - ab = 1

=> a.(1 - b) - 1 + b  = 0

=> a.(1 - b) - (1 - b) = 0

=> (1 - b).(a - 1) = 0

=> a = b = 1

Ta có: P = 20.a + 11.b + 2017

P = 20.1 + 11.b + 2017

P = 20 + 11 + 2017

P = 2048

 

15 tháng 1 2018

\(\frac{1}{8}.16^n=2^n\)

\(\frac{16^n}{8}=2^n\)

\(\frac{\left(2^4\right)^n}{2^3}=2^n\)

\(\frac{2^{4n}}{2^3}=2^n\)

=> 23=24n:2n

23=23n

=> 3n=3

=> n=1

24 tháng 11 2016

theo bài ra ta có

\(\frac{a^{2015}}{b^{2017}+c^{2019}}=\frac{b^{2017}}{a^{2015}+c^{2019}}=\frac{c^{2019}}{a^{2015}+b^{2017}}\)

=>\(\frac{a^{2015}}{b^{2017}+c^{2019}}+1=\frac{b^{2017}}{a^{2015}+c^{2019}}+1=\frac{c^{2019}}{a^{2015}+b^{2017}}+1\)

=> \(\frac{a^{2015}+b^{2017}+c^{2019}}{b^{2017}+c^{2019}}=\frac{a^{2015}+b^{2017}+c^{2019}}{a^{2015}+c^{2019}}=\frac{a^{2015}+b^{2017}+c^{2019}}{a^{2015}+b^{2017}}\)

  • nếu a2015+ b2017 +c2019 = 0

=> b2017+ c2019 = -(a2015) (1)

=> a2015+ c2019= -(b2017) (2)

=> a2015+ b2017= -(c2019) (3)

thay 1, 2, 3 vào S ta có:

S = \(\frac{b^{2017}+c^{2019}}{a^{2015}}+\frac{a^{2015}+c^{2019}}{b^{2017}}+\frac{a^{2015}+b^{2017}}{c^{2019}}\)

=> S =\(\frac{-\left(a^{2015}\right)}{a^{2015}}+\frac{-\left(b^{2017}\right)}{b^{2017}}+\frac{-\left(c^{2019}\right)}{c^{2019}}\)

S = -1 + -1 + -1

S = -3

vậy S ko phụ thuộc vào giá trị a,b,c

  • nếu a2015+b2017+c2019 khác 0

=> b2017+c2019 = a2015+c2019=a2015+b2017

=> b2017 = a2015 = c2019

=>S=\(\frac{b^{2017}+c^{2019}}{a^{2015}}+\frac{a^{2015}+c^{2019}}{b^{2017}}+\frac{a^{2015}+b^{2017}}{c^{2019}}=\frac{2a^{2015}}{a^{2015}}+\frac{2b^{2017}}{b^{2017}}+\frac{2c^{2019}}{c^{2019}}=2+2+2=6\)

VẬY S ko phụ thuộc vào các giá trị của a,b,c

từ 2 trường hợp trên => giá trị của biểu thức S ko phụ thuộc vào giá trị của a,b,c (đpcm)

26 tháng 11 2016

thanks you :)

10 tháng 2 2018

khothe

10 tháng 2 2018

=> 2016+2017 = a+3c+a+2b

=> 2a+2b+2c = 4033

=> 2a+2b+2c = 4033 - c

=> 2.(a+b+c) = 4033 - c < = 4033 - 0 = 4033 ( vì c >= 0 )

=> a+b+c < = 4033/2

Dấu "=" xảy ra <=> c=0 ; a+3c = 2016 ; a+2b = 2017 <=> a=672 ; b=1345/2 ; c=0

Vậy ............

Tk mk nha

30 tháng 12 2022

Ta có: a + 3c = 2016 ; a + 2b = 2017

Do đó : 2a + 2b + 3c = 2a + 2b + 2c + c = 2 (a + b + c) + c = 4033  

Suy ra: 2 (a + b + c) = 4033 - c

Để 2 (a + b + c) lớn nhất thì 4033 - c lớn nhất

Nên c nhỏ nhất , mà c >= 0 nên c = 0.

Từ đó ta suy ra  : 2 (a + b + c) <= 4033 <=> a + b + c <= 2016,5

Vậy Max P = 2016,5 

Khi c = 0 ; a = 2016 ; b = 0,5