K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2018

a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{2017.2018}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-..........-\frac{1}{2018}\)

\(=1-\frac{1}{2018}\)

\(=\frac{2018}{2018}-\frac{1}{2018}=\frac{2017}{2018}\)

b) \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+..........+\frac{2}{2017.2018}+\frac{2}{2018.2019}\)

\(=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.........+\frac{1}{2017.2018}+\frac{1}{2018.2019}\right)\)

\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.........-\frac{1}{2018}+\frac{1}{2018}-\frac{1}{2019}\right)\)

\(=2\left(1-\frac{1}{2019}\right)\)

\(=2\left(\frac{2019}{2019}-\frac{1}{2019}\right)\)

\(=2.\frac{2018}{2019}\)

\(=\frac{4036}{2019}\)

Phần c tương tự nha

1 tháng 7 2018

a) \(\frac{1}{1.2}\) +  \(\frac{1}{2.3}\) + .......+  \(\frac{1}{2017.2018}\)

= 1 -  \(\frac{1}{2}\) + \(\frac{1}{2}\) -  \(\frac{1}{3}\) + .......+  \(\frac{1}{2017}\) -   \(\frac{1}{2018}\)

= 1 -  \(\frac{1}{2018}\) =  \(\frac{2017}{2018}\)

câu a) mik sửa đề một tí ko biết có đúng ko

câu b , c tương tự nhưng cần lấy tử ra chung 

12 tháng 6 2018

\(a,\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2017\cdot2018}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(=1-\frac{1}{2018}\)

\(=\frac{2017}{2018}.\)

\(b,\left[x\cdot\frac{5}{3}-1\right]:9=3\frac{1}{2}:2,25\)

\(\Leftrightarrow\left[x\cdot\frac{5}{3}-1\right]:9=\frac{7}{2}:\frac{9}{4}\)

\(\Leftrightarrow\left[x\cdot\frac{5}{3}-1\right]:9=\frac{7}{2}\cdot\frac{4}{9}\)

\(\Leftrightarrow\left[x\cdot\frac{5}{3}-1\right]:9=\frac{14}{9}\)

\(\Leftrightarrow x\cdot\frac{5}{3}-1=\frac{14}{9}\cdot9\)

\(\Leftrightarrow x\cdot\frac{5}{3}-1=14\)

\(\Leftrightarrow x\cdot\frac{5}{3}=14+1\)

\(\Leftrightarrow x\cdot\frac{5}{3}=15\)

\(\Leftrightarrow x=15:\frac{5}{3}\)

\(\Leftrightarrow x=15\cdot\frac{3}{5}\)

\(\Leftrightarrow x=9.\)

12 tháng 6 2018

a)\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2017.2018}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(=\frac{1}{1}-\frac{1}{2018}\)

\(=\frac{2017}{2018}\)

b)\(\left[x.\frac{5}{3}-1\right]:9=3\frac{1}{2}:2,25\)

\(\Leftrightarrow\left[x.\frac{5}{3}-1\right]:9=3\frac{1}{2}:\frac{9}{4}=1\frac{5}{9}\)

\(\Rightarrow x.\frac{5}{3}-1=1\frac{5}{9}.9=14\)

\(\Rightarrow x.\frac{5}{3}=14+1=15\)

\(\Rightarrow x=15:\frac{5}{3}=9\)

6 tháng 8 2018

So sánh à bạn?

6 tháng 8 2018

A=\(\frac{1}{2}\).\(\frac{2}{3}\)....\(\frac{2012}{2013}\)=\(\frac{1}{2013}\)

B=\(\frac{2012}{2012.2013}\)=\(\frac{1}{2013}\)

vậy A=B

24 tháng 6 2017

2, \(\frac{10}{1.2.3}+\frac{10}{2.3.4}+\frac{10}{3.4.5}+....+\frac{10}{100.101.102}\)

  \(=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{102-100}{100.101.102}\)

  \(=\frac{10}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{100.101}-\frac{1}{101.102}\right)\)

  \(=\frac{10}{2}.\left(\frac{1}{1.2}-\frac{1}{101.102}\right)\)

  \(=\frac{10}{2}.\frac{2575}{5151}\)

  \(=2,499514657\)

24 tháng 6 2017

= 2,499514657 bạn nhé

1 tháng 7 2016

1/1x2+1/2x3+1/3x4+...+1/99x100+1

1/1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100 +1

=1- 1/100 +1

=99/100 +1

=199/100

1 tháng 7 2016

1/1.2 + 1/2.3 + 1/3.4 + ... + 1/999.1000 + 1

= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/999 - 1/1000 + 1

= 1 - 1/1000 + 1

= 2 - 1/1000

= 2000/1000 - 1/1000

= 1999/1000

Ủng hộ mk nha ♡_♡☆_☆

27 tháng 4 2019

\(B=4.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{29.30}\right)\)

\(B=4.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{29}-\frac{1}{30}\right)\)

\(B=4.\left(1-\frac{1}{30}\right)\)

\(B=4.\frac{29}{30}\)

\(B=\frac{58}{15}\)

27 tháng 4 2019

\(B=4\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{29}-\frac{1}{30}\right)\) 

\(=4\left(1-\frac{1}{30}\right)\) 

\(=4.\frac{29}{30}=\frac{58}{15}\) 

Vậy B= \(\frac{58}{15}\)

20 tháng 6 2019

#)Giải :

Đặt \(A=4-\frac{2}{1.2}-\frac{2}{2.3}-\frac{2}{3.4}-...-\frac{2}{99.100}\)

\(A=4-\left(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\right)\)

\(A=4-2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)

\(A=4-2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(A=4-2\left(1-\frac{1}{100}\right)\)

\(A=4-2\times\frac{99}{100}\)

\(A=4-\frac{99}{50}\)

\(A=\frac{101}{50}\)

23 tháng 9 2020

 mn ơi \(2ab=200+ab\) nha không phải \(2\cdot ab\)

23 tháng 9 2020

làm :                                                                                                                                                                                                                  

\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)

\(=\frac{1}{2}-\frac{1}{8}\)

\(=\frac{3}{8}\)

b, \(ab\cdot10-ab=2ab\)

\(ab\cdot10-ab\cdot1=2ab\)

\(ab\cdot\left(10-1\right)=2ab\)

\(ab\cdot9=2ab\)

\(ab\cdot9=200+ab\cdot1\)

\(ab\cdot9-ab\cdot1=200\)

\(ab\cdot\left(9-1\right)=200\)

\(ab\cdot8=200\)

\(ab=200:8\)

\(ab=25\)

17 tháng 8 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}\)

\(=1-\frac{1}{6}\)

\(=\frac{5}{6}\)

♥ ☼ ↕ ✿ ⊰ ⊱ ✪ ✣ ✤ ✥ ✦ ✧ ✩ ✫ ✬ ✭ ✯ ✰ ✱ ✲ ✳ ❃ ❂ ❁ ❀ ✿ ✶ ✴ ❄ ❉ ❋ ❖ ⊹⊱✿ ✿⊰⊹ ♧ ✿ 

\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}=\)

\(\frac{1}{1}-\frac{1}{6}=\frac{5}{6}\)