K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2020

Nguyễn Anh Đức             

Bài này có thể phải dùng đến BĐT tam giác ; em đã học loại BĐT này chưa ?

17 tháng 3 2020

Theo BĐT \(\Delta\)\(AB+AC>BC\)

Thay số :  AB = 4cm; AC = 6cm

\(\Rightarrow4+6>BC\Rightarrow10>BC\)(1)

cũng theo Theo BĐT \(\Delta\); có :

\(AC-AB< BC\)

Thay số :  AB = 4cm; AC = 6cm

\(6-4< BC\Rightarrow2< BC\)(2)

Từ 1 và 2

=> \(2cm< BC< 10cm\)

 
24 tháng 3 2021

\(BC=BH+HC=2+8=10\left(cm\right)\)

△ABC vuông tại A có \(BC^2=AB^2+AC^2\\ \Rightarrow AB^2=BC^2-AC^2=10^2-6^2=64\\ \Rightarrow AB=8\left(cm\right)\)

a: Ta có: ΔABC cân tại A

mà AI là đường trung tuyến

nên AI là đường cao

Vì I là trung điểm của BC nên IB=IC=BC/2=3cm

=>AI=4cm

b: Xét tứ giác AMIN có \(\widehat{AMI}+\widehat{ANI}+\widehat{MAN}+\widehat{MIN}=360^0\)

nên \(\widehat{MIN}=60^0\)(2)

Xét ΔAMI vuông tại M và ΔANI vuông tại N có

AI chug

\(\widehat{MAI}=\widehat{NAI}\)

Do đó: ΔAMI=ΔANI

Suy ra: IM=IN

=>ΔIMN cân tại I(1)

Từ (1) và (2) suy raΔIMN đều

22 tháng 11 2021

\(\Delta ABC=\Delta MNP\Rightarrow\left\{{}\begin{matrix}AB=MN\\AC=MP=6\left(cm\right)\\BC=NP\end{matrix}\right.\Rightarrow AB+BC=MN+NP=8\left(cm\right)\)

Mà \(MN-NP=2\left(cm\right)\)

\(\Rightarrow\left\{{}\begin{matrix}MP=6\left(cm\right)\\MN=\left(8+2\right):2=5\left(cm\right)\\NP=5-2=3\left(cm\right)\end{matrix}\right.\)

Bài 1:Cho ΔABC có AB=3cm,AC=4cm,BC=5cm                                                                                 Kẻ AH⊥BC                                                                                                                                                    a,cmr: ΔABC là Δ vuông                                                 ...
Đọc tiếp

Bài 1:Cho ΔABC có AB=3cm,AC=4cm,BC=5cm                                                                       
          Kẻ AH⊥BC                                                                                                                                                   
 a,cmr: ΔABC là Δ vuông                                                                                                                                                                
 b,Trên BC lấy D sao cho AB=BD                                                                                                                                                   
    Trên AC lấy E sao cho AE=AH                                                                                                                                                                                     
 cmr:AD là phân giác của góc HAD                                                                                                                                           
 c,cmr:DE⊥AC                                                                                                                                                                                 (nhớ vẽ hình giùm mình nha)

1

a: BC^2=AB^2+AC^2

=>ΔABC vuông tại A

b: góc BAD+góc EAD=90 độ

góc BDA+góc HAD=90 độ

mà góc BAD=góc BDA

nên góc EAD=góc HAD

=>AD là phân giác của góc HAC

c: Xét ΔAHD và ΔAED có

AH=AE

góc HAD=góc EAD

AD chung

=>ΔAHD=ΔAED

=>góc AED=góc AHD=90 độ

=>DE vuông góc AC

9 tháng 3 2020

A B C H

a) Xét tam giác ABH và tam giác ACH có
AB=AC (tam giác ABC cân tại A)

\(\widehat{ABH}=\widehat{ACH}\)(tam giác ABC cân tại A)

BH=HC(H là trung điểm BC)

=> Tam giác ABH = Tam giác ACH (cgc)

b) Vì tam giác ABC cân tại A (gt) và H là trung điểm BC(gt)

=> AH là đường trung tuyến đồng thời là đường cao của tam giác ABC

=> AH vuông góc với BC(đpcm)

9 tháng 3 2020

A C B H E K 1 2

a) Xét t/giác ABH và t/giác ACH

c: AB = AC (gt)

  BH = CH (gt)

  AH: chung

=> t/giác ABH = t/giác ACH (c.c.c)

b) Ta có: t/giác ABH = t/giác ACH (cmt)

=> \(\widehat{AHB}=\widehat{AHC}\)(2 góc t/ứng)

mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(kề bù)

=> \(\widehat{AHB}=\widehat{AHC}=90^0\)

=> AH \(\perp\)BC

c) Ta có: BH = CH = 1/BC = 1/2.6 = 3 (cm)

Áp dụng định lí Pi - ta - go vào t/giác ABH vuông tại H, ta có:

AB2 = AH2 + BH2 => AH2 = 52 - 32 = 16

=> AH = 4 (cm)

d) Ta có: t/giác AHB = t/giác AHC (cmt)

=> \(\widehat{A_1}=\widehat{A_2}\) (2 góc t/ứng)

Xét t/giác AHE và t/giác AHK

có: \(\widehat{A_1}=\widehat{A_2}\)(cmt)

  AH : chung

\(\widehat{AEH}=\widehat{AKH}=90^0\)(gt)

=> t/giác AHE = t/giác AHK (ch - gn)

=> HE = HK (2 cạnh t/ứng)

e) Ta có: t/giác AHE = t/giác AHK (cmt)

=> AE = AK (2 cạnh t/ứng)

=> t/giác AEK cân tại A

=> \(\widehat{AEK}=\widehat{AKE}=\frac{180^0-\widehat{A}}{2}\)(1)

T/giác ABC cân tại A

=> \(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\)(2)

Từ (1) và (2) => \(\widehat{AEK}=\widehat{B}\)

Mà 2  góc này ở vị trí đồng vị

=> EK // BC

22 tháng 3 2018

Theo bất đẳng thức ΔABC ta có:

AC – BC < AB < AC + BC

Theo độ dài BC = 1cm, AC = 7cm

7 – 1 < AB < 7 + 1

6 < AB < 8  (1)

Vì độ dài AB là một số nguyên thỏa mãn (1) nên AB = 7cm

Do đó ∆ ABC cân tại A vì AB = AC = 7cm

a: BC=căn 6^2+8^2=10cm

b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

góc ABE=góc HBE

=>ΔBAE=ΔBHE

c Xét ΔBHF vuông tại H và ΔBAC vuông tại A có

BH=BA

góc HBF chung

=>ΔBHF=ΔBAC

=>BF=BC

mà góc FBC=60 độ

nên ΔBFC đều