Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/4.x^2-(1/2.x-4).1/2x=-14 <-->1/4.x^2-1/4.x^2+2x=-14 <-->2x=14 <-->x=7
a)
3x-2=2x+3
=> (3x-2)-(2x+3)=0
=> x-5=0
=> x=5
b)
x(1-x)=0
=> _x=0
|_1-x=0=>x=1
Ta có: Trong tam giác DAB có phân giác DE\(\Rightarrow\) AE/EB = AD/DB
Trong tam giác ADC có phân giác DF\(\Rightarrow\) DC/DA = AF/FC
\(\Rightarrow\) AD/DB.BD/DC.DC/DA =1
Thay vào ta được:
EA/EB.DB/DC.FC/FA =1
\(P=\frac{x^2+x+1}{x^2+2x+1}\)\(=\frac{x^2+2x+1}{\left(x+1\right)^2}\frac{ }{ }\frac{x}{\left(x+1\right)^2}\)\(=1-\frac{1}{x+1}+\frac{1}{\left(x+1\right)^2}\)\(=\frac{1}{4}-\frac{1}{x+1}+\frac{1}{\left(x+1\right)^2}+\frac{3}{4}\)\(=\left(\frac{1}{2}-\frac{1}{x+1^{ }}\right)^2+\frac{3}{4}\)> hoặc = \(\frac{3}{4}\) với mọi x
Dấu = xảy ra <=> \(\frac{1}{x+1}\)=\(\frac{1}{2}\) <=> x = 1
Bạn Nguyễn Châu Anh nha ! Bạn làm tắt từ dấu bằng thứ ba làm mình mãi mới luận đc tưởng sai oan cho bạn !!! ai coi đc cái này đừng hiểu lầm bạn ấy ! Thank you nhìu !!!
Ta có \(\left(\frac{1}{2}x+y\right)\left(...\right)=\frac{x^3+8y^3}{8}\)
\(\Leftrightarrow8\left(\frac{1}{2}x+y\right)\left(...\right)=x^3-8y^3\)
\(\Leftrightarrow4\left(x+2y\right)\left(...\right)=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
\(\Rightarrow4\left(...\right)=x^2-2xy+4y^2\)
\(\Rightarrow\left(...\right)=\frac{x^2-2xy+4y^2}{4}\)
Vậy đccm
#Học tốt
Ta có VP = \(\frac{x^3+8y^3}{8}\)
VP=\(\frac{x^3}{8}+y^3\)=\(\left(\frac{x}{2}\right)^3+y^3\)=\(\left(\frac{x}{2}+y\right)\).\(\left(\frac{x^2}{4}-\frac{xy}{2}+y^2\right)\)
Vậy \(\left(\frac{x^2}{4}-\frac{xy}{2}+y^2\right)\)
ta có : a+b+c=0 => (a+b+c)(a2+b2+c2-ab-ac-bc)=0 (đoạn này bạn tự nhân ra rồi rút gọn nhé)
=> a3+b3+c3-3abc=0 => a3+b3+c3= 3abc
thay a=\(\frac{1}{x}\);b=\(\frac{1}{y}\);c=\(\frac{1}{z}\)
=>\(\frac{1}{x^3}\)+\(\frac{1}{y^3}\)+\(\frac{1}{z^3}\)=3.\(\frac{1}{xyz}\)
A=xyz(\(\frac{1}{x^3}\)+\(\frac{1}{y^3}\)+\(\frac{1}{z^3}\)) = xyz .3 . \(\frac{1}{xyz}\)=3