K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2016

3a2c2 + bd + 3abc + acd

= 3ac(ac + b) + d(ac + b)

= (ac + b)(3ac + d)

ab(a + b) - bc(a + c) + abc

= b(a2 + ab - ac - c2 + ac)

= b(a2 + ab - c2)

a(b2 + c2) + b(c2 + a2) + c(a2 + b2) + 2abc

= ab2 + ac2 + bc2 + a2b + c(a2 + 2ab + b2)

= c2(a + b) + ab(a + b) + c(a + b)2

= (a + b)(c2 + ab + ac + bc)

= (a + b)[c(b + c) + a(b + c)]

= (a + b)(a + c)(b + c)

bc(b + c) + ac(c - a) - ab(a + b)

= bc(b + c) + ac[(b + c) - (a + b)] - ab(a + b)

= bc(b + c) + ac(b + c) - ac(a + b) - ab(a + b)

= c(b + c)(a + b) - a(a + b)(b + c)

= (a + b)(b + c)(c - a)

Bài 1:

a) \(\left(a-b^2\right)\left(a+b^2\right)=a^2-b^4\)

b) \(\left(a^2+2a-3\right)\left(a^2+2a+3\right)=\left(a^2+2a\right)^2-9\)

c) \(\left(a^2+2a+3\right)\left(a^2-2a-3\right)=a^2-\left(2a+3\right)^2\)

d) \(\left(a^2-2a+3\right)\left(a^2+2a+3\right)=9-\left(a^2-2a\right)^2\)

e) \(\left(-a^2-2a+3\right)\left(-a^2-2a+3\right)=\left(-a^2-2a+3\right)^2\)

g) \(\left(a^2+2a+3\right)\left(a^2-2a+3\right)=\left(a^2+3\right)^2-4a^2\)

f) \(\left(a^2+2a\right)\left(2a-a^2\right)=4a^2-a^4\)

Bài 2 :

a) \(\left(x+1\right)\left(x^2-x+1\right)=x^3+1\)

b) \(\left(x+y+z\right)^2=\left(x+y+z\right)\left(x+y+z\right)=x^2+xy+xz+yx+y^2+yz+zx+zy+z^2=x^2+2xy+2yz+2xz+y^2+z^2\)

c) \(\left(x-y+z\right)^2=\left(x-y+z\right)\left(x-y+z\right)=x^2-xy+xz-xy+y^2-yz+xz-yz+z^2=x^2+y^2+z^2-2xy+2xz-2yz\)d) \(\left(x-2y\right)\left(x^2+2xy+4y^2\right)=\left(x-2y\right)^3\)

e) \(\left(x-y-z\right)^2=\left(x-y-z\right)\left(x-y-z\right)=x^2-xy-xz-xy+y^2+yz-xz+yz+z^2=x^2-2xy-2xz+2yz+y^2+z^2\)

17 tháng 8 2020

a)Ta có:

\(\left(x-2\right)^2-\left(x-3\right)\left(x-1\right)\\ =x^2-4x+4-x^2+4x-3\\ =1\)

Vậy biểu thức \(\left(x-2\right)^2-\left(x-3\right)\left(x-1\right)\)không phụ thuộc vào biến

b) Ta có:

\(\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\\ =x^3-3x^2+3x-1-x^3-3x^2-3x-1+6x^2-6\\ =-8\)

Vậy.....

c) Ta có:

\(\left(x-3\right)\left(x+3\right)\left(x^2+9\right)-\left(x^2-2\right)\left(x^2+2\right)\\ =\left(x^2-9\right)\left(x^2+9\right)-x^4+4\\ =x^4-81-x^4+4=-77\)

Vậy....

d) Ta có: \(\left(3x+1\right)^2-2\left(3x+1\right)\left(3x-5\right)+\left(3x-5\right)^2\\ =\left(3x+1-3x+5\right)^2\\ =6^2=36\)

Vậy....

24 tháng 1 2017

Ta có:

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=4\left(a^2+b^2+c^2-ab-bc-ac\right)\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2=4a^2+4b^2+4c^2-4ab-4bc-4ac\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=4a^2+4b^2+4c^2-4ab-4bc-4ac\)

\(\Leftrightarrow0=2a^2+2b^2+2c^2-2ab-2bc-2ac\)

\(\Leftrightarrow0=a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\)

\(\Leftrightarrow0=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)

\(\left\{\begin{matrix}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)

\(\Rightarrow a=b=c\) ( đpcm )

20 tháng 3 2021

\(a\left(b+c\right)\left(b^2-c^2\right)+b\left(a+c\right)\left(c^2-a^2\right)+c\left(a+b\right)\left(a^2-b^2\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)

8 tháng 8 2021

a)\(=5c\left(a^2-9b^2\right)+5c^2.\left(3b-a\right)\))\

\(=5c\left(a-3b\right)\left(a+3b\right)-5c^2.\left(a-3b\right)\)

\(5c.\left(a-3b\right)\left(a+3b-c\right)\)

b)\(=xy.\left(3x-y\right)-xyz.\left(3x-y\right)\)

\(=xy.\left(3x-y\right)\left(1-z\right)\)

c) \(=a^2m^2+2ambp+b^2p^2-a^2p^2-2ambp-b^2m^2\)

\(=a^2m^2-a^2p^2+b^2p^2-b^2m^2\)

\(=a^2.\left(m^2-p^2\right)+b^2\left(p^2-m^2\right)\)

\(=a^2.\left(m^2-p^2\right)-b^2\left(m^2-p^2\right)\)

\(=\left(a^2-b^2\right)\left(m^2-p^2\right)\)

\(=\left(a-b\right)\left(a+b\right)\left(m-p\right)\left(m+p\right)\)

21 tháng 7 2017

a) \(\left(9x-1\right)^2+\left(1-5x\right)^2+2\left(9x-1\right)\left(1-5x\right)\)

\(=\left(9x-1\right)^2+2\left(9x-1\right)\left(1-5x\right)+\left(1-5x\right)^2\)

\(=\left(9x-1+1-5x\right)^2=\left(4x\right)^2\)

b) \(x^2\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)\)

\(=x^2\left(x^2-16\right)-\left(x^4-1\right)\)

\(=x^4-16x^2-x^4+1=-16x^2+1\)

11 tháng 10 2016

a)\(\left(5x-1\right)^2-\left(5x-4\right)\left(5x+4\right)=7\)

\(\Leftrightarrow25x^2-10x+1-25x^2+16=7\)

\(\Leftrightarrow-10x=-10\)

\(\Leftrightarrow x=1\)

b) k hiểu đề

11 tháng 10 2016

đề cũng là tìm x mà

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

góc BAE chung

Do đó: ΔAEB\(\sim\)ΔAFC

SUy ra:AE/AF=AB/AC

hay \(AE\cdot AC=AB\cdot AF\)

b: Xét ΔBDH vuông tại D và ΔBEC vuông tại E có

góc EBC chung

Do đó; ΔDBH\(\sim\)ΔEBC

SUy ra: BD/BE=BH/BC

hay \(BD\cdot BC=BH\cdot BE\)

c: Xét ΔHFA vuông tại F và ΔHDC vuông tại D có

\(\widehat{AHF}=\widehat{CHD}\)

Do đó: ΔHFA\(\sim\)ΔHDC

Suy ra: HF/HD=HA/HC

hay \(HF\cdot HC=HD\cdot HA\left(1\right)\)

Xét ΔHFB vuông tại F và ΔHEC vuông tạiE có

\(\widehat{FHB}=\widehat{EHC}\)

Do đó: ΔHFB\(\sim\)ΔHEC
Suy ra: HF/HE=HB/HC

hay \(HF\cdot HC=HB\cdot HE\left(2\right)\)

Từ (1) và (2) suy ra \(HA\cdot HD=HB\cdot HE=HC\cdot HF\)