K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 4: Tam giác ABC vuông tại A, đường cao AH. I, K lần lượt là hình chiếu của H trên AB, AC. M là trung điểm của BC. Chứng minh rằng: AM vuông góc với IKBài 5: Hình thang vuông ABCD, góc A= góc B= 90 độ, AB= AD= CD/2. E thuộc AB; EF vuông góc với DE ( F thuộc DC ). Chứng minh rằng: ED= EFBài 1:1) Tính nhanh:d) D= 100^2+ 103^2+ 105^2+ 94^2- ( 101^2+ 98^2+ 96^2+ 107^2 )2)Rút gọn và tính giá trị của biểu thức:b)...
Đọc tiếp

Bài 4: Tam giác ABC vuông tại A, đường cao AH. I, K lần lượt là hình chiếu của H trên AB, AC. M là trung điểm của BC. Chứng minh rằng: AM vuông góc với IK
Bài 5: Hình thang vuông ABCD, góc A= góc B= 90 độ, AB= AD= CD/2. E thuộc AB; EF vuông góc với DE ( F thuộc DC ). Chứng minh rằng: ED= EF

Bài 1:
1) Tính nhanh:
d) D= 100^2+ 103^2+ 105^2+ 94^2- ( 101^2+ 98^2+ 96^2+ 107^2 )
2)Rút gọn và tính giá trị của biểu thức:
b) (x-2)^3-(x-2)(x^2+2x+4)+6(x-2)(x+2)-x(x-1) tại x= 101
c) (x+1)^3-(x+3)(x^2-3x+9)+3(2x-1)^2 tại x= -2
Bài 11: Xác định đa thức f(x) biết f(x) chia hết cho (x-2) dư 5, f(x) chia cho (x-3) dư 7, f(x) chia cho (x-3)(x-2) được thương x^2-1 và có dư
Bài 12: Tìm x tự nhiên sao cho:
a) Giá trị biểu thức x^3+2x-x^2+7 chia hết cho giá trị biểu thức (x^2+1)
b) Giá trị đa thức ( 2x^4-3x^3-x^2+5x-4) chia hết cho giá trị đa thức (x-3)
Bài 13: Tìm x thuộc Z để giá trị biểu thức 8x^2-4x+1 chia hết cho giá trị biểu thức 2x+1
Bài 14: Chứng minh rằng:
a) a^3-a chia hết cho 24a với a là số nguyên tố lớn hơn 3
b) n(2n+1)(7n+1) chia hết cho 6 với mọi n thuộc Z
c) n^3-13n chia hết cho 6 với mọi n thuộc Z
d) a^5-a chia hết cho 30 với mọi a thuộc Z

0
7 tháng 9 2019

4x^3-3x^2 +1 x^2+2x-1 4x 4x^3+8x^2-4x - -11x^2+4x+1 -11 -11x^2-22x+11 - 26x-10

OLM chỉ có phần chụp ảnh cho CTV

Lưu ý bạn cố phải viết thẳng hàng vì OLM ko viết đc

7 tháng 4 2020

Bài 1 : 

a) x3y3 + x2y+ 4 

= (xy)3 + ( xy)2 + 4 

= ( xy )3 + 2( xy )- (xy)2 -  2xy + 2xy + 4 

= (xy)2 ( xy + 3 ) - xy (xy+22 ) + 2 ( xy+ 2 ) 

= ( xy + 2 ) [ ( xy)2 -xy + 2 ]

b) 2x4 -5x3 + 2x2 - x + 2 

= 2x4 - 4x3 -x3 + 2x2 - x + 2 

= 2x3 (x- 2 ) - x( x - 2 ) -  ( x - 2 ) 

= ( x -2 ) . ( 2x3 -x2 -1) 

= (x-2 ) . ( 2x3 -2x2 + x2 - x + x - 1 ) 

 = ( x- 2 ) . [ 2x2 . ( x-1 ) + x . ( x-1 ) + ( x- 1 ) ] 

= ( x- 2 ) . ( x- 1 ) . ( 2x2 + x + 1 ) 

Phần còn lại bạn làm tương tự  

Bài 2 :

Vì f(x) chia cho x - 3 thì dư 2 => f(3) = 2 

f(x) chia cho x + 4 thì dư 9 => f(-4) = 9 

f(x) chia cho ( x2 + x - 12 ) được thương là ( x+ 3 ) và còn dư 

=> f ( x ) =( x2 + 3 ) ( x+ x -12 ) + ( cx + d ) = ( x2 + 3 . ( x-3 ) . ( x + 4 ) + ( cx + d ) 

Ta có : \(\hept{\begin{cases}f\left(3\right)=3c+d=2\\f\left(-4\right)=-4c+d=9\end{cases}\Rightarrow\hept{\begin{cases}d=2-3c\\d=9+4c\end{cases}\Rightarrow}2-3c=9}+4c\Rightarrow-3c-4c=9-2\)

\(\Rightarrow-7c=7\Rightarrow c=-1\).Với c = 1 => d=5 

Vậy f ( x ) = ( x2 + 3 ) .( x2 + x -12 ) - x + 5 = x4 + x3 - 9x2 + 2x - 31