K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2018

1)\(ĐKXĐ:x\ne0\)

Đặt \(\left(x+\dfrac{1}{x}\right)^2=a\)

\(\Rightarrow x^2+\dfrac{1}{x^2}=a-2\)

\(\Rightarrow VT=2a+\left(a-2\right)^2-\left(a-2\right)a\)

\(=2a+a^2-4a+4-a^2+2a=4\)

\(\Rightarrow\left(x+2\right)^2=4\)

\(\Rightarrow\left[{}\begin{matrix}x=0\left(loai\right)\\x=-4\end{matrix}\right.\)

a: \(\Leftrightarrow\left(1-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{17}+...+\dfrac{1}{49}-\dfrac{1}{57}\right)+2x-2=\dfrac{2}{3}x+\dfrac{7}{3}+\dfrac{5}{4}x-2\)

\(\Leftrightarrow\dfrac{56}{57}+2x-2=\dfrac{23}{12}x+\dfrac{1}{3}\)

=>1/12x=77/57

=>x=308/19

b: =>(x^2-4)(x^2-10)=72

=>x^4-14x^2+40-72=0

=>x^4-14x^2-32=0

=>(x^2-16)(x^2+2)=0

=>x^2-16=0

=>x^2=16

=>x=4 hoặc x=-4

3 tháng 11 2018

c/m biểu thức không phụ thuộc vào biến

16 tháng 11 2022

a: \(=\dfrac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{2\left(x-1\right)\left(x+1\right)}{5}\cdot2\)

\(=\dfrac{10}{5}\cdot2=4\)

b: \(=\dfrac{x}{x-3}-\dfrac{x\left(x+3\right)}{2x+3}\cdot\dfrac{x^2+6x+9-x^2}{x\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{x}{x-3}-\dfrac{3}{x-3}=1\)

21 tháng 12 2018

GIÚP MÌNH VỚI MAI LÀ NỘP BÀI RỒI

23 tháng 12 2018

câu a) và b) thì sử dụng tính chất nếu tích =0 thì có ít nhất 1 thừa số =0

c)4x^2+4x+1=0

(2x+1)^2=0

2x+1=0

x=-1/2

25 tháng 12 2017

c) \(8x^3-1=8x^2+4x+2\)

<=> \(\left(2x-3\right)\left(4x^2+2x+1\right)=0\)

<=> \(2x-3=0\) hoặc \(4x^2+2x+1=0\)

Th1: x=\(\dfrac{3}{2}\)

Th2: Vô nghiệm

Vậy x=\(\dfrac{3}{2}\)

28 tháng 12 2017

\(\text{a) }\dfrac{2x^2-x-1}{2}-3x^2+x+4=\left(5-x\right)\left(2x+4\right)\\ \Leftrightarrow\left(\dfrac{2x^2-x-1}{2}-3x^2+x+4\right)2=\left(5-x\right)\left(2x+4\right)2\\ \Leftrightarrow2x^2-x-1-6x^2+2x+8=\left(5-x\right)\left(4x+8\right)\\ \Leftrightarrow-4x^2+x+7=20x+40-4x^2-8x\\ \Leftrightarrow-4x^2+x+4x^2-12x=40-7\\ \Leftrightarrow-11x=33\\ \Leftrightarrow x=-3\\ \text{Vậy }S=\left\{-3\right\}\)

\(\text{b) }\dfrac{\left(2x-5\right)\left(3x+7\right)}{4}+2x-1=\dfrac{\left(x-1\right)\left(2x+4\right)}{2}+1\\ \Leftrightarrow\dfrac{\left(2x-5\right)\left(3x+7\right)}{4}+2x-1=\left(x-1\right)\left(x+2\right)+1\\ \Leftrightarrow\left(\dfrac{\left(2x-5\right)\left(3x+7\right)}{4}+2x-1\right)4=\left(x^2-x+2x-2+1\right)4\\ \Leftrightarrow\left(2x-5\right)\left(3x+7\right)+8x-4=\left(x^2+x-1\right)4\\ \Leftrightarrow6x^2-15x+14x-35+8x-4=4x^2+4x-4\\ \Leftrightarrow6x^2+7x-39=4x^2+4x-4\\ \Leftrightarrow6x^2+7x-4x^2-4x-39+4=0\\ \Leftrightarrow2x^2+3x-35=0\\ \Leftrightarrow2x^2+10x-7x-35=0\\ \Leftrightarrow\left(2x^2+10x\right)-\left(7x+35\right)=0\\ \Leftrightarrow2x\left(x+5\right)-7\left(x+5\right)=0\\ \Leftrightarrow\left(2x-7\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-7=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-5\end{matrix}\right.\\ \\ \text{Vậy }S=\left\{\dfrac{7}{2};-5\right\}\)

\(\text{c) }8x^3-1=8x^2+4x+2\\ \Leftrightarrow\left(2x-1\right)\left(4x^2+2x+1\right)=2\left(4x^2+2x+1\right)\\ \Leftrightarrow2x-1=2\\ \Leftrightarrow2x=3\\ \Leftrightarrow x=\dfrac{3}{2}\\ \text{Vậy }S=\left\{\dfrac{3}{2}\right\}\)

\(\text{d) }\left(x^2+x+1\right)\left(x^2-x+1\right)=x^6-1\\ \Leftrightarrow\left(x^3+1\right)\left(x^3-1\right)=\left(x^2+x+1\right)\left(x^2-x+1\right)\\ \Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)\left(x-1\right)\left(x^2-x+1\right)=\left(x^2+x+1\right)\left(x^2-x+1\right)\\ \Leftrightarrow\left(x+1\right)\left(x-1\right)=1\\ \Leftrightarrow x^2-1=1\\ \Leftrightarrow x^2=2\\ \Leftrightarrow x=\sqrt{2}\\ \text{Vậy }S=\left\{\sqrt{2}\right\}\)

\(\text{e) }\left(x^3+2x\right)\left(x^2+4\right)=\left(x^2+6x^2+8\right)\left(3-2x\right)\\ \Leftrightarrow x\left(x^2+2\right)\left(x^2+4\right)=\left(x^2+2x^2+4x^2+8\right)\left(3-2x\right)\\ \Leftrightarrow x\left(x^2+2\right)\left(x^2+4\right)=\left[\left(x^2+2x^2\right)+\left(4x^2+8\right)\right]\left(3-2x\right)\\ \Leftrightarrow x\left(x^2+2\right)\left(x^2+4\right)=\left[x^2\left(x^2+2\right)+4\left(x^2+2\right)\right]\left(3-2x\right)\\ \Leftrightarrow x\left(x^2+2\right)\left(x^2+4\right)=\left(x^2+4\right)\left(x^2+2\right)\left(3-2x\right)\\ \Leftrightarrow x=3-2x\\ \Leftrightarrow3x=3\\ \Leftrightarrow x=1\\ \text{Vậy }S=\left\{1\right\}\)

f) Kiểm tra lại hạng tử thứ 2 ở vế phải.

15 tháng 4 2018

a) \(\left(2x+1\right)^2-\left(x+2\right)^2>0\)

\(\Leftrightarrow\left(2x+1-x-2\right)\left(2x+1+x+2\right)>0\)

\(\Leftrightarrow\left(x-1\right)\left(3x+3\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1>0\\3x+3>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\\3x+3< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x>-1\end{matrix}\right.\\\left\{{}\begin{matrix}x< 1\\x< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)

Vậy tập nghiệm của bất phương trình là x > 1 hoặc x < -1

b) Sửa lại rồi làm câu b nèk\(\dfrac{5x-3x}{5}+\dfrac{3x+1}{4}>\dfrac{x\left(2x+1\right)}{2}-\dfrac{3}{2}\)

\(\Leftrightarrow4\left(5x-3x\right)+5\left(3x+1\right)>10\left(x+2x\right)-30\)\(\Leftrightarrow20x-12x+15x+5>10x+20x-30\)\(\Leftrightarrow20x-12x+15x-10x-20x>-30-5\)\(\Leftrightarrow-7x>-35\)

\(\Leftrightarrow x< 5\)

c) \(\dfrac{-1}{2x+3}< 0\)

dễ nhé mình học bài hóa mai kt 15 phút nên ko có time để giúp

16 tháng 6 2017

a) Có lẽ câu này sai đề rồi. Dấu chia phải là dấu nhân chứ?

Mình sửa đề luôn nhé.

\(15\dfrac{1}{4}.\left(-\dfrac{7}{5}\right)-25\dfrac{1}{4}.\left(-\dfrac{7}{5}\right)\)

= \(-\dfrac{7}{5}.\left(15\dfrac{1}{4}-25\dfrac{1}{4}\right)\)

= \(-\dfrac{7}{5}.\left(\dfrac{61}{4}-\dfrac{101}{4}\right)\)

= \(-\dfrac{7}{5}.\left(-10\right)\)

= \(14\)

b) \(38-2y=\dfrac{4}{3}\)

\(2y=38-\dfrac{4}{3}=\dfrac{110}{3}\Rightarrow y=\dfrac{55}{3}\)

NV
9 tháng 12 2018

1/

\(y\left(x+1\right)-x^2\left(x+1\right)=7\Leftrightarrow\left(x+1\right)\left(y-x^2\right)=7\)

TH1: \(\left\{{}\begin{matrix}x+1=1\\y-x^2=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=7\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}x+1=7\\y-x^2=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=6\\y=37\end{matrix}\right.\)

TH3: \(\left\{{}\begin{matrix}x+1=-1\\y-x^2=-7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=-3\end{matrix}\right.\)

TH4: \(\left\{{}\begin{matrix}x+1=-7\\y-x^2=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-8\\y=63\end{matrix}\right.\)

2/

\(\left(1+\dfrac{1}{\left(2-1\right)\left(2+1\right)}\right)\left(1+\dfrac{1}{\left(3-1\right)\left(3+1\right)}\right)...\left(1+\dfrac{1}{\left(x+1-1\right)\left(x+1+1\right)}\right)=\dfrac{2.2011}{2012}\)

\(\Leftrightarrow\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}...\dfrac{\left(x+1\right)^2}{x\left(x+2\right)}=\dfrac{2.2011}{2012}\)

\(\Leftrightarrow\dfrac{2.3.4...\left(x+1\right)}{1.2.3...x}.\dfrac{2.3.4...\left(x+1\right)}{3.4.5...\left(x+2\right)}=\dfrac{2.2011}{2012}\)

\(\Leftrightarrow\dfrac{2\left(x+1\right)}{\left(x+2\right)}=\dfrac{2.2011}{2012}\)

\(\Leftrightarrow2012\left(x+1\right)=2011\left(x+2\right)\)

\(\Leftrightarrow x=2010\)

16 tháng 4 2018

\(\text{a) }\dfrac{5x^2-3x}{5}+\dfrac{3x+1}{4}< \dfrac{x\left(2x+1\right)}{2}-\dfrac{3}{2}\\ \Leftrightarrow4\left(5x^2-3x\right)+5\left(3x+1\right)< 10x\left(2x+1\right)-15\\ \Leftrightarrow20x^2-12x+15x+5< 20x^2+10x-15\\ \Leftrightarrow20x^2+3x-20x^2-10x< -15-5\\ \Leftrightarrow-7x< -20\\ \Leftrightarrow x>\dfrac{20}{7}\)

Vậy bất phương trình có nghiệm \(x>\dfrac{20}{7}\)

\(\text{b) }\dfrac{5x-20}{3}-\dfrac{2x^2+x}{2}\ge\dfrac{x\left(1-3x\right)}{3}-\dfrac{5x}{4}\\ \Leftrightarrow4\left(5x-20\right)-6\left(2x^2+x\right)\ge4x\left(1-3x\right)-15x\\ \Leftrightarrow20x-80-12x^2-6x\ge4x-12x^2-15x\\ \Leftrightarrow-12x^2+14x+12x^2+11x\ge80\\ \Leftrightarrow25x\ge80\\ \Leftrightarrow x\ge\dfrac{16}{5}\)

Vậy bất phương trình có nghiệm \(x\ge\dfrac{16}{5}\)

\(\text{c) }\left(x+3\right)^2\le x^2-7\\ \Leftrightarrow x^2+6x+9\le x^2-7\\ \Leftrightarrow x^2+6x-x^2\le-7-9\\ \Leftrightarrow6x\le-16\\ \Leftrightarrow x\le-\dfrac{8}{3}\)

Vậy bất phương trình có nghiệm \(x\le-\dfrac{8}{3}\)